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Summary

The efficiency and accuracy of several algorithms

recently developed for the efficient numerical integration
of stiff ordinary differential equations are compared.
The methods examined include two general-purpose

codes, EPISODE and LSODE, and three codes
(CHEMEQ, CREKID, and GCKP84) developed specifi-

cally to integrate chemical kinetic rate equations. The
codes are applied to two test problems drawn from
combustion kinetics. The comparisons show that LSODE

is the fastest code currently available for the integration
of combustion kinetic rate equations.

An important finding is that an iterative solution of the
algebraic energy conservation equation to compute the

temperature does not result in significant errors. In addi-
tion, this method can he more efficient than evaluating

the temperature by integrating its time derivative.
Significant reductions in computational work are

realized by updating the rate constants (k=ATN

exp(- E/R T)) only when the temperature change exceeds
an amount AT that is problem dependent. An

approximate expression for the automatic evaluation of
AT is derived and is shown to result in increased

efficiency.

Introduction

The major problem associated with the simultaneous
numerical integration of large sets of chemical kinetic

rate equations is that of stiffness. Although stiffness does
not have a simple definition (see, e.g., Shampine, refs. 1
and 2), it is characterized by widely varying time

constants. For example, in hydrogen-air combustion the
induction time is of the order of microseconds whereas

the nitric oxide formation time is of the order of

milliseconds. These widely different time constants

present classical methods (such as the popular explicit
Runge-Kutta method) with the following difficulty: to
ensure stability of the numerical solution, these methods

are restricted to using very short time steps that are
determined by the smallest time constant. However, the

time for all chemical species to reach near-equilibrium
values is determined by the largest time constant. As a

result, classical methods require excessive amounts of

computer time to solve stiff systems of ordinary differ-
ential equations (ODE's).

Several approaches for the solution of stiff ODE's
have been proposed; for details, see the reviews by
Lomax and Bailey (ref. 3), Seinfeld, et al. (ref. 4),

Enright and Hull fief. 5), and Shampine and Gear
(ref. 6). Of all these techniques the general-purpose codes
EPISODE and LSODE (refs. 7 to 10) are regarded as the

best available "packaged" codes for the solution of stiff

systems of ODE's. However, although these codes may
be the best available for solving an arbitrary system of
ODE's, it may be possible to construct a superior method

for solving a particular system of ODE's governing the
behavior of a specific problem. In this vein, Young and

Boris (ref. 11), Pratt fiefs. 12 to 15), and Zeleznik and
McBride (ref. 16) have developed codes for the specific

purpose of integrating large systems of chemical kinetic
rate equations.

The objective of the present investigation is to identify

the fastest algorithm currently available for the numerical

integration of combustion kinetic rate equations.1 The
motivation behind this work is the increasing interest in
(1) modeling the reaction mechanisms describing the

consumption of fuels and pollutant formation and
destruction and (2) multidimensional modeling of
reactive flows, which includes the equations of fluid
motion. The former results in the need to integrate large

systems of nonlinear ODE's (reaction rates). The latter

results in the need to integrate these rate equations at
several thousand grid points. To make such calculations

practicable, it is necessary to have a very fast homo-
geneous batch chemistry integrator.

In the present report, currently available techniques are
examined by application to two test problems drawn
from combustion kinetics. A detailed comparison of the

efficiency and accuracy of these techniques is presented,
and recommendations are made for ways to increase the

speed of general-purpose codes, as applied to the present
problem.

lln this report, attention is restrictedto adiabatic, constant pressure
(hence, isenthalpic), exothermic chemical reactions.



Symbols

A j, A_j preexponential constants in forward and
reverse rate equations for reaction j (eq.
(5)), units depend on reaction type

Bj, B_j exponent-on-ten in modified Arrhenius

preexponential factor, Bj=logl0 A j,

B_j = logl0 A _j, arbitrary units

CPU total CPU time required on IBM 370/3033, s

cp, i constant-pressure specific heat of species i,
J/kmole K

E i estimated local error in independent variable

i (eq. (17))

Ej, E_j activation energy in forward and reverse rate
equations for reaction j (eq. (5)), cal/mole

EPS for all methods, except EPISODE and
DASCRU: local relative error tolerance;
for EPISODE: local relative error tolerance

for species with initially nonzero mole
numbers and for the temperature, and local

absolute error tolerance for species with
initially zero mole numbers; for DASCRU."
local relative error tolerance for a variable

whose magnitude is greater than or equal
to 10-3, and local absolute error tolerance

for a variable whose magnitude is less than
10 3

relative error tolerance for Newton-Raphson
iteration for temperature

rate of formation of species i (eq. (2)),
kmole i/kg mixture s

1-atmosphere molal-specific Gibbs function

of species i, J/kmole

initial mass-specific enthalpy of mixture,
J/kg

initial step length to be attempted by
integrator, s

h i molal-specific enthalpy of species i, J/kmole

IERROR error control indicator for EPISODE

ITMAX maximum number of corrector iterations to

be attempted by CHEMEQ and CREK1D

ITOL error control indicator for LSODE

J Jacobian matrix: for temperature method A
of size NSxNS: Jik=Ofi/Onk, i,k=I,NS
(eq. (11)); for temperature method B, of

size (NS+I)x(NS+I): Jik=Ofi/Onlo i,k=

1,NS (eq. (11)); Ji,NS+l=Ofi/OT, i=I,NS

(eq. (13)); JNs+l,k=O/Onk (dT/dt),
k=I,NS (eq. (14)); JNS+I,NS+I=O/OT
(dT/dt) (eq. (15))

ERMAX

f_

gO

/40

H0

JJ

k j, k_j

MF

Nj, N_j

NFE

NJE

NRRC

NS

NSTEP

ni

nj, nj'

?lm

Zxnj

p

R

R j, R _j

T

Tj, T_j

AT

t

tswitch

Cabs

eabs,i

erel

total number of distinct elementary reactions
in reaction mechanism

forward and reverse rate constants for reac-

tion j (eq. (5)), units depend on reaction type

integration method to be used by EPISODE
and LSODE

temperature exponent in forward and reverse

rate constants for reaction j (eq. (5))

total number of functional (i.e., derivative)
evaluations

total number of Jacobian matrix evaluations

total number of reaction rate constant
evaluations

total number of distinct chemical species in
gas mixture

total number of steps required to solve
problem

mole number of species i, kmole species i/
kg mixture

molecularities of forward and reverse

reactions j (eq. (12))

reciprocal of mixture mean molar mass
(eq. (10)), kmole/kg

difference in molecularities of reverse and

forward reactions j (eq. (6c))

pressure, N/in2

universal gas constant, 8314.3 J/kmole K
(1.9872 cal/mole K)

molar forward and reverse rates per unit
volume for reaction j, kmole/m3 s

temperature, K

activation temperatures in forward and
reverse rate constants for reaction j,

: Ej/R; r_j =e_j/R, K
maximum temperature change allowed before
reaction rate constants are updated. For
CREK1D, CHEMEQ-B, and DASCRU-B

thermodynamic data are also updated only
for temperature changes greater than AT, K

time, s

time at which error control performed by
EPISODE is switched from semirelative to

pure relative, s

mole fraction of species i

local absolute error tolerance (eq. (18))

local absolute error tolerance for species i (eq.
(19))

local relative error tolerance (eq. (17))



stoichiometriccoefficientsfor speciesi in
forwardandreversereactionsj (eq. (1));

number of kilomoles i in elementary reaction

j as a reactant and as a product, respectively

mixture mass density, kg/m3

Problem Statement

The (initial value) problem may be stated as follows:
given (1) a set of initial conditions (n i (i = 1 ,NS), where n i
is the mole number of species i (kmole species i/kg

mixture) and NS is the total number of distinct chemical
species involved in the combustion reaction and the

temperature T (K)) at time t = 0, (2) the pressure p, and
(3) the reaction mechanism, find the mixture composition

and temperature at the end of a prescribed time interval.
All chemical reactions are assumed to be elementary

reactions of the type

NS NS

_._ uljXi= E uijXi j= 1,JJ (1)
i=1 i=1

where vi'j and Pi'j are the stoichiometric coefficients of
species i (with chemical formula Xi) in reaction j as a
reactant and as a product, respectively, and JJ is the total
number of distinct elementary reactions in the given
reaction mechanism.

The ordinary differential equations describing

adiabatic, homogeneous, gas-phase combustion reactions
are as follows:

dt -_fi(nk'T) i,k= 1,NS

ni(t = 0) = given (2)

T (t = 0) = given

Rj=AjT%xp(U_ff-_)

NS

= kjB1 _nk)vkJ

NS

H (Pnk)Vkj
k=l

NS

IX (Pnk) vkj
k=l

(4a)

and

NS .R_j=A jT-Jexp RT / k=l

=A_j7 w Jexp IX (Pnk) _kj
k=l

NS

= k_j I-I (.Pnk)_ (4b)
k=l

In equations (2) to (4), p is the mixture density (kg/m3)

and Aj, A _j, Nj, N_j, Ej, Tj (=Ej/R) E_j, and T_j

(=E_j/R) are constants in the modified Arrhenius rate
expressions of the forward Rj and reverse R_j rates of

reaction j. The forward kj and reverse k_j rate constants
for reaction j are given by

(5a)

(Sb)

In this study the reverse rate constants are calculated
from the forward rate constants and the concentration

equilibrium constant by using the principle of detailed

balancing (ref. 17). The resulting equations are

where

JJ

fi = --/9- 1 E (vi'J -- _'(J)(RJ -R -J)
j=l

(3)

where the molar reaction rates per unit volume Rj and

R _j are given by

NS

i=1

T_j = Tj + (6a)
R

k_j= kj(RT)'a+exp = 1 (Pij -- glj)g 0
"

(6b)



where h i is the molal-specific enthalpy of species i

(J/kmole), g0is the l-atmosphere molal-specific Gibbs

function of species i (J/kmole) and Anj is given by

NS

&nj= i___1 (u_-u_) (6c)

Equality of the temperature exponents in equations

(5b) and (6b) for k_j together with equation (5a) results

in the following relation for N_j:

N_j=Nj+ Anj (6d)

For a constant-pressure, adiabatic combustion reac-

tion, the following enthalpy conservation equation

constitutes an algebraic constraint on equations (2) to (4):

NS

nih i = H 0 = constant (7)
i=1

where H o is the mass-specific enthalpy of the mixture

(J/kg).

Time differentiation of equation (7) provides the

following equation for the time rate of change of

temperature:

NS

- El/hi
dT i=1

dt NS

.E niCp, i
I=l

(8)

where cp, i is the constant-pressure specific heat of

species i (J/kmole K).

The density p of the mixture is given by the equation of

state for an ideal gas mixture

P

P - RTnm (9)

where p is the absolute pressure (N/m2), R the universal

gas constant (J/kmole K), and the reciprocal of the mean
molar mass of the mixture

NS

rim= _-a ni (10)
i=1

Some of the techniques used in the present study

require the evaluation of the Jacobian matrix J

(Jik = Ofi/Ong; i,k = 1,NS). Differentiation of equation (3)

with respect to ng gives the following expression for Jik:

JJ

Jik = - (pnD - 1 ]_ 0'i] - pi]) 0'£jRj- u£jR _j) + fi
j= 1 nm

JJ

+ (prim) - 1 ._ O'i'i -- ui'j) (njRj - rlfR _j)
J=l

(11)

where nj and nj'are, respectively, the molecularities of the

forward and reverse reaction j and are given by

NS

F/j= C _'ii I

i=l

NS

nf= E _i]
i=1

(12)

When temperature is included as an explicit

independent variable (see the section Evaluation of

Temperature for more details), the Jacobian elements

afi/aT (i=I,NS), a/ank (dT/dt) (k=I,NS), and

O/aT(dT/dt) are also needed. These are obtained by

differentiating equation (3) with respect to T and

equation (8) with respect to nk and T. These operations

yield

Ofi f/ 1 JJ fD/

-- '--_1 (_i'j -- _i'j) [.,,xj_Nj-F Tj _
OT T pT j= T

,+ .j)] (13)

i=1

O dT (14)

E niCp, i
i=1

NS Of/. NS dT _ n
i=l i=1 i=1

NS

S "iCp, i
i=1

(15)



Methods Studied

The methods examined in this study include the

general-purpose packages EPISODE and LSODE (refs. 7

to 10), developed for an arbitrary system of ODE's, and

the specialized codes CHEMEQ (ref. 11), CREK1D (ref.

15), and GCKP84 (refs. 16 and 18), developed

specifically to integrate chemical kinetic rate equations.

In addition, an explicit Runge-Kutta-Merson differential

equation solver (ref. 19) (IMSL routine DASCRU) is

used to illustrate the difficulty associated with integrating

chemical kinetic rate equations by classical methods.

These methods are summarized in table I and discussed in

more detail in appendix A.

The packages EPISODE and LSODE, based on the

methods of Gear (refs. 20 and 21), consist of a variable-

step, variable-order implicit Adams method (suitable for

nonstiff problems) and a variable-step, variable-order

backward differentiation method (suitable for stiff

problems). A range of corrector iteration methods--from

functional iteration to chord method (a variant of

Newton's method) with a banded Jacobian generated

internally--is included in these packages. The user selects

both the basic method and the corrector iteration method

by means of a method flag MF.

In CHEMEQ the ODE's are separated into two classes,

stiff and normal, at the beginning of each time step. A

classical second-order predictor-corrector method is used

for equations classified as normal. For stiff equations a

simple asymptotic integration formula is used.

CREK1D is based on the exponentially fitted

trapezoidal rule developed by Liniger and Willoughby

(ref. 22) and by Brandon (refs. 23 and 24). The algorithm

includes special treatment of ill-posed initial conditions

and automatic selection of functional iteration or

Newton iteration.

GCKP84, developed by Bittker and Scullins (ref. 18), is

a new general chemical kinetics program that supersedes

their previous GCKP codes (ref. 25). The new code uses

the integration technique developed by Zeleznik and

McBride (ref. 16) specifically to integrate chemical

kinetic rate equations. Details of this integration

technique are not yet available.

DASCRU is an explicit fourth-order Runge-Kutta-

Merson ODE solver. This method requires five derivative

evaluations per step. The additional derivative evaluation

provides an estimate of the local truncation error

(ref. 19).

Test Problems

The algorithms summarized in the preceding section

were applied to two test problems drawn from com-

bustion kinetics. Both problems include all three regions

of interest to a combustion researcher: induction, heat

release, and equilibration.

Test problem 1, taken from Pratt (ref. 12), describes

the ignition and subsequent combustion of a mixture of

33 percent carbon monoxide and 67 percent hydrogen

with 100 percent theoretical air, at a pressure of 10

atmospheres and an initial temperature of 1000 K. It

comprises 12 reactions (table II) that describe the time

evolution of 11 species. Test problem 2, taken from

Bittker and Scullins (ref. 18), describes the ignition and

subsequent combustion of a stoichiometric mixture of

hydrogen and air, at a pressure of 2 atmospheres and an

initial temperature of 1500 K. It involves 30 reactions

(table III) that describe the time evolution of 15 species.

The initial values for the species mole fractions and

temperature are given in tables IV and V for test

problems 1 and 2, respectively. Also given in these tables

are the equilibrium values for the species mole fractions

and temperature calculated by using a Gibbs function

minimization routine (ref. 26). Both test problems were

TABLE I.--SUMMARY OF METHODS STUDIED

Code or Description
method

GCKP84

CREK 1D

LSODE;
EPISODE

CHEMEQ

DASCRU

Details not yet available
Variable-step, predictor-corrector method based on an exponentially fitted trapezoidal

rule; includes filtering of ill-posed initial conditions and automatic selection of
functional iteration or Newton iteration

Variable-step, variable-order backward differentiation method with a generalized
Newton iteration a

Variable-step, second-order predictor-corrector method with an asymptotic integration

formula for stiff equations
Variable-step, fourth-order, explicit Runge-Kutta-Merson solver

aother options are included in these packages.



TABLE II.--REATION MECHANISMS AND RATE

CONSTANTS USED IN TEST PROBLEM 1

Reaction

CO+OH=CO2+H

H+O2=O+OH

H2+O=H+OH

H20+O=OH+OH

H +H20 =H2+OH

N+O2=NO+O

N2+O=N+NO

NO+M=N+O+M

H+H+M=H2+M

O+O+M=O2+M

H+OH+M=H20+M

H 2 +0 2 =OH +OH

Rate constants a

B N E, kcal/mole

11.49 0 0.596

14.34 16.492

13.48 9.339

13.92 18.121

14.0 I r 19.870

9.81 1.0 6.250

13.85 0 75.506

20.60 - 1.5 149.025

18.00 - 1.0 0

18.14 -I.0 .34

23.88 -2.6 0

13.00 0 43.0

aRate constant k= 10BTNexp( E/RT).

TABLE III.--REACTION MECHANISMS AND RATE

CONSTANTS USED FOR TEST PROBLEM 2

Reaction Rate constants a

B N E, kcal/mole

H+O2=OH+O 14.342 0 16.790

O+H2=OH+H 10.255 1.0 8.900

H2+OH=H20+H 13.716 0 6.500

OH + OH = O + H20 12.799 | 1.093

H+OE+M=HO2+M 15.176 _ - 1.000O+O+M=OE+M 13.756 -1.788

H+H+M=H2+M 17.919 -l.0 0

H+OH+M=H20+M 21.924 -2.0 0

HE +HOE =H20 +OH 11.857 0 18.700

H2OE+M =OH +OH+M 17.068 45.500

HE + 02 = OH + OH 13.000 43.000

H +HO E =OH +OH 14.398 1.900

O + HO 2 = OH + 02 13.699 1.000

OH + HO2 = H20 + O2 13.699 1.000

HO 2 + HO 2 = H202 + O 2 12.255 0

OH + H202 = H20 + HO2 13.000 1.800

O +H202 =OH +HO2 13.903 1.000

H +H202 =H20 +OH 14.505 9.000

HO2 +NO =NO2 +OH 13.079 2.380

O +NO2 =NO +02 13.000 .596

NO+O+M=NO2+M 15.750 -1.160

NO2+H =NO+OH 14.462 lr .795

N+O2=NO+O 9.806 1.0 6.250

O+N2=NO+N 14.255 0 76.250

N+OH=NO+H 13.602 0

N20 +M =N2 +O +M 14.152 51.280

O + N20 = N2 + 02 13.794 24.520

O + N20 = NO + NO 13.491 21.800

N +NO2 =NO +NO 12.556 / 0

OH+N2=N20+H 12.505 ] ' 80.280

aRate constant k = 10BTgqexp(E/RT).

integrated over a time of 1 ms to obtain near

equilibration of all species.

Discussion of Results

In this section, we discuss the computational work

(which we shall take as a measure of the efficiency of the
algorithm) and the accuracy of the techniques selected for
our study. All of the codes were applied to the two test
problems discussed above. All codes were run on the

NASA Lewis Research Center's IBM 370/3033 computer
using single-precision accuracy, except GCKP84, which
was in double precision.

Computational Procedure

A typical computational run consisted of initializing
the time (t, set equal to 0), species mole numbers,
temperature, and the CPU time.2 The integrator was then

called with values for the necessary input parameters,

which are discussed in the section Efficiency
Comparisons, and the elapsed time (1 ms for both
problems) at which the solution is to be terminated. The

integrator returns to the main calling program with the
computed solutions for the mole numbers and, for some

methods, the temperature. The integrator also returns

with values for the following parameters, which give a
measure of the computational work required to solve the
problem: total number of steps NSTEP, total number of
functional (i.e., derivative) evaluations NFE, total

number of Jacobian matrix evaluations (NJE=0 for

CHEMEQ and DASCRU), and, for reasons presented
later, total number of rate constant evaluations NRRC.

On return from the integrator the computer time CPU
required to solve the problem was calculated.

Evaluation of Temperature

Of the codes tested, only CREKID and GCKP84 were

written explicitly for the integration of exothermic, non-
isothermal, combustion rate equations. These therefore

have built-in procedures for calculating the temperature.
For the other codes the temperature was computed by
using one of two different methods, labeled as methods A
and B.3

2Before this was done, various preprocessors were called to read in

thermochemical and reaction rate data and to compute the initial

mixture properties and the equilibrium composition and temperature.

This does not affect the work required by the integrator. The storage

and work requirements of these preprocessors are therefore not

included in this study.

3The following convention was adopted in naming these other codes:

those using temperature method A were given the suffix A (e.g.,

LSODE-A, EPISODE-A, etc.) and those using temperature method B

were given the suffix B (e.g., CHEMEQ-B, DASCRU-B, etc.).



TABLE IV.--COMPOSITIONS AND TEMPERATURES FOR TEST PROBLEM 1

[Solution generated with LSODE-B and EPS = 10-5.]

Compo-

nent and

Time, t, s

9×10 -6 10 5 5:<10 -5 10 4 5x10 4 10 3temper-

ature

Composition, species mole fraction

CO

CO2

H

H2

H20

N

NO

N2

O

OH

02

8.319× 10 -2

0

0

1.664 × 10-1

0

0

0

6.256× 10 1

0

0

1.248 x 10- 1

8.311×10 2

8.359x 10 5

1.400×10 3

1.641 x 10 1

1.519× 10 -3

2.419 x 10 -I9

5.501 × 10-16

6.256 x 10-1

1.699×10 4

4.569 x 10 5

1.239 x 10 I

8.292 x 10- 2

2.886×10 4

4.572x 10 3

1.588× 10 -I

5.221× 10 3

2.419 × 10 19

1.725x10 13

6.257 × 10 1

5.678 x 10 4

1.508 × 10 .4

1.217× 10 -1

3.123 × 10 -2

6.078 × 10- 2

5.958 × 10 -3

1.373 × 10 2

1.608 × 10 l

3.258× 10-7

6.295 × 10- 5

6.919x 10 -1

3.803 x 10- 3

1.301 × 10 2

1.878 × 10 2

2.562× 10 2

6.715 x 10 2

3.131 × 10 3

1.030 × 10 2

1.682 × 10 1

4.117x 10 7

1.993 × 10 4

6.975 × 10

2.173 x 10 3

1.082 × 10-2

1.484 × 10 -2

1.802 × 10 2

7.557 × 10 2

1,177 × 10 -3

6.559 × 10 -3

1.762 x 10-1

3.778 x 10 7

9.975 × 10 4

7.033 × 10 t

8.779>,:10 4

7.552 x 10 3

9.752 × 10-3

1.754 x 10- 2

7.610 × 10 -2

1.084 × 10 3

6.357x 10 -3

1.767 × 10- l

3.364× 10 7

1.666×10 3

7.034×10 1

7.986×10 4

7.238× 10 3

9.171 × 10 .3

Temperature, T, K

1.798 ×

7.564 ×

1.059 x

6.580 x

1.768 x

2.209 ×

5.347 ×

7.014×

7.048 ×

6.762 x

7.826 ×

10 2

10-2

10-3

10 3

10-J

10 7

10 3

10

10 4

10 3

10 3

T A 1000 1001 1006 2407 2512 2623 2629 2619

T B .... 1001 1006 2407 2512 2623 2628 ....

TABLE V.--COMPOSITIONS AND TEMPERATURES FOR TEST PROBLEM 2

[Solution generated for LSODE-B and EPS = 10 5.]

Compo-

nent and

temper-

ature

Time, t, s

0 3x10 6 5x10-6 10 5 5x10 5 10 4 5×10 4 10 3 oo

Composition, species mole fraction

Ar

CO2

H

HO2

H2

H20

H202

N

NO

NO2

N2

N20

O

OH

02

6.571 × 10 3

2.110x 10 4

0

0

2.951 × 10 t

0

0

0

0

0

5.501 × 10 1

0

0

0

1.480x 10 t

6.572x 10 3

2.111 xl0 -4

3.006 x 10 3

3.261 x 10 5

2.896 × 10- I

3.807 x 10 -3

3.442 x 10 - 8

1.718x 10 12

4.894 x 10- if2

1.639x 10-15

5.502 x 10-1

1.090 × 10 - 9

6.325 x 10 4

3.358x 10 4

1.456x 10-1

6.605 x 10-3

2.121 x 10 -4

1.073 x 10 i

1.183 × 10 5

9.272 x 10- 2

1.429x 10 i

3.790 x 10 6

2.039 x 10 Io

3.769x 10 9

2.112x 10 t9

5.530x 10 i

6.095 x 10 8

2.533 x 10 :'

1.452 x 10 - 2

5.738x 10 2

6.744 × 10 -3

2.166x 10 ,a

9.848 x 10 2

5.878 × 10 -6

6.201 x 10 -2

1.793 x 10 t

5.603 x 10 6

4.927 x 10-9

2.925 × 10 7

3.520 x 10 11

5.646 x 10 1

1.149x 10 7

2.841 × 10 2

2.440 x 10 -2

3.583 x 10 2

7.080 × 10- 3

2.274 x 10 4

4.542x 10 2

5.121 x 10 .6
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In method A the temperature was calculated from the
mole numbers and the initial mixture enthalpy by using

the algebraic enthalpy equation (eq. (7)). A Newton-
Raphson iteration technique (with a user-specified
relative error tolerance ERMAX) was used to solve

equation (7) for the temperature. In this method the
temperature does not enter into the problem as an explicit

independent variable, so the number of independent
ODE's is equal to the number of species NS and the
Jacobian matrix is of size NS by NS. The integrator
therefore tracks only the solution for the mole numbers.

As shown later, this did not introduce significant errors
because the species concentrations changed faster than

the temperature (figs. 1 and 2) and the step length was

determined by the rate at which the variables changed.
Since the integrator did not compute a solution for the
temperature, it was evaluated from the solution for the
mole numbers returned by the integrator. In addition, the

temperature was computed whenever the species time

derivatives (dni/dt) and the Jacobian matrix
(Jik = afilOnk; i,k = 1 ,NS) were evaluated.

In method B the temperature was treated as an
additional independent variable and evaluated by
integrating its time derivative (eq. (8)). This increased the
number of independent ODE's to NS+I, and the

computation of the Jacobian matrix (of size (NS + 1) by
(NS + 1)) involved the calculation of 2NS + 1 additional

terms. In this method, the integrator tracks the solutions
for both the temperature and the species mole numbers.

Accuracy Estimate

To compare the accuracy of the algorithms, standard
solutions must be established since exact solutions for the
test cases are not known. The solutions used as standards

were those generated by using LSODE-B (which is

LSODE using method B for computing the temperature)
because LSODE and its predecessors have been
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Figure 1.--Variation with time of species mole fractions and

temperature for test problem 1. Solution generated with LSODE-B

and EPS = 10 -5.
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extensively tested on a wide variety of problems (refs. 7,

8, 27 to 29). A low relative error tolerance (EPS-- 10-5)
was used, and the method flag MF was set equal to 21

(stiff method, user-supplied analytic evaluation of the
complete Jacobian matrix). As discussed in appendix B,
LSODE requires the specification of values for both the
local relative and absolute error tolerances. In the test

problems examined in this study the species mole
numbers and temperature differed widely (tables IV and
V), so relative error control was appropriate. Pure
relative (or absolute) error control can be realized by

using a value of zero for the absolute (or relative) error
tolerance. However, since some of the mole numbers had
zero initial values, a truly relative error criterion could

not be used. To make the local error control mostly
relative, low values for the absolute tolerance for species

mole numbers and zero for temperature were used.
Values for the absolute error tolerances for the species

mole numbers were obtained by progressively decreasing
them until the temperature-time trace showed essentially

no change with a further decrease. The values used for
the absolute error tolerances for the species mole
numbers were 10-14 and 10-11 for test problems 1 and 2,

respectively.
To determine if the use of solutions generated with

LSODE as standards biases the test in favor of LSODE,

we explore the use of other standards in the section

Efficiency Comparisons and show that these do not give
different results.

The standard solutions (for the mole fractions and

temperature) are shown in figures 1 and 2 for test
problems 1 and 2, respectively. The values for the mole
fractions and temperatures at various times are shown in

tables IV and V for problems 1 and 2, respectively. The
third column in these tables presents immediate

postinduction (i.e., end of the essentially isothermal
reaction period) values, and the remaining columns show

development of postinduction profiles. The last column
shows the equilibrium solution obtained by using a Gibbs
function minimization routine (ref. 26).

Although these standard solutions were generated by
using temperature method B, method A was also used

during these computations to evaluate the temperature,
using only the solution for the mole numbers returned by

the integrator. This was done to see if any consistent
differences could be observed between values generated

by using method A (T A in tables IV and V) and those
generated by using method B (T B in tables IV and V). The
consistently excellent agreement between TA and TB
indicates that either method A or B would suffice for

computing the temperature.

Storage Requirement and Startup Time

Multidimensional models for reactive flows require the

integration of large sets of reaction rate equations at

several thousand grid points for relatively short times
between fluid mechanic time steps (ref. I l). These models

generally also have large storage requirements. Hence

reaction rate integration techniques with both a low
storage requirement and a low initialization (startup)
time are needed.

The storage requirements (for 20 species and 36
reactions) for the single-precision versions of CREK1D,

LSODE, EPISODE, CHEMEQ, and DASCRU are given
in table VI. The storage requirements for LSODE,
EPISODE, and DASCRU are for versions that included

both methods A and B for calculating the temperature.
The temperature method to be used was specified via a

temperature-method flag. Also, for LSODE the given
figure does not include the storage required by

subroutines (included in this package) that are not
essential for its execution with method flag MF = 21. The

storage shown in table VI for GCKP84 is that required by
the double-precision version. We note that the special-
purpose codes CHEMEQ and CREK1D required much

less storage than the general-purpose codes EPISODE
and LSODE. GCKP84 required more storage than the
other codes because of the precision used and also

because of the various options built into it. Although
GCKP84 is a special-purpose code in that it has been

developed for chemical kinetics problems, it can be used
to solve a wider variety of problems than CHEMEQ and

CREK1D (ref. 18).
The CPU time required by each code to successfully

complete the first step was taken as a measure of the

startup time. Each code was run with a low value for the
elapsed time to ensure that only one step was taken to

complete the problem. Note, however, that because of
the automatic filtering of initial conditions (appendix A),

CREK1D took two steps to return with a solution. The
CPU times (in milliseconds) required for the first step
(and the first two steps for CREK1D) are given in table

VII. The general-purpose codes required longer
initialization times than the special-purpose codes.

GCKP84 required a much longer startup time than the
other codes for the same reasons that its storage
requirement is greater and also because of the extra work

TABLE VI.--STORAGE

REQUIREMENTS

Method Storage size,

bytes

GKCP84 a

CREK 1D

LSODE

EPISODE

CHEMEQ-A

CHEMEQ-B

DASCRU

205 948

26 304

47 152

35 116

10 832

10 552

10 928

aDouble-precision version.



TABLE VII.--CENTRAL PROCESS-

ING UNIT TIMES REQUIRED TO
SUCCESSFULLY COMPLETE

FIRST STEP

Method

GCKP84

CREK1D

LSODE-A

LSODE-B

EPISODE-A

EPISODE-B

CHEMEQ-A

CHEMEQ-B

DASCRU-A

DASCRU-B

Problem 1 Problem 2

CPU time CPU ms,

32

a9

20

19

14

13

6

6

7

6

44

a17

24

24

18

18

10

8

11

10

aTime required for first two steps.

involved in handling species whose mole numbers have

zero initial values (see ref. 18 for details).

Efficiency Comparisons

The procedure described in the section Computational
Procedure was used to study the computational work

required by the different techniques examined in this
study. For LSODE, EPISODE, CHEMEQ, and
DASCRU both temperature methods A and B were
attempted.

The codes examined in the present study require the
specification of several parameters in addition to the

local error tolerance EPS required of the solution. Values
for these parameters that minimized the computational

work required by each code were obtained by using a

trial-and-error process. Following are the user-supplied
parameters (excluding the local error tolerance EPS and

the elapsed time at which the integration is to be
terminated) required by each code (see appendix B for a

detailed discussion)--for EPISODE: the method flag
MF, the error control to be performed IERROR, and the
initial step length H0 to be used; for LSODE: the method

flag MF, the error control to be performed ITOL, and
the values for the absolute error tolerances for the

independent variables; for CHEMEQ: the maximum
number of corrector iterations ITMAX allowed before

nonconvergence is declared; for CREKID: the maximum
number of corrector iterations ITMAX allowed before

nonconvergence is declared and the maximum

temperature change AT allowed before thermodynamic
properties and reaction rate constants are updated; for

GCKP84: since details for this technique are not yet
available, default values for all parameters to be used; for
DASCRU: a guess for the initial step length H0 to be
used.

The following selection procedure was adopted in
using these techniques: each code was run with a value of

10 -2 for the error tolerance EPS, and a solution (with

output at various times) was generated. The computed
temperature-time profile was then compared with the
standard solution and was accepted if within 50 kelvins.
Otherwise, it was rejected and a lower value for EPS was

tried. This ensured that computational work was
compared with codes of comparable accuracy. All of the

results presented herein, except EPISODE and GCKP84
for test problem l, satisfied this criterion. In other words,

for these codes no EPS _> 10-6 resulted in acceptable
agreement. With DASCRU the temperature did not
satisfy this criterion during early heat release for test
problem 1.

For test problem 2, some runs with DASCRU and

LSODE predicted zero mole numbers for the nitrogen
dioxide at times when the standard solutions had risen to

measurable levels (of the order of 0.1 ppm). All codes

were therefore required to satisfy the following
additional criterion: a run was accepted only if it
predicted nonzero mole fractions for all species whose

standard solution values were greater than or equal to
10 -7. All results presented herein satisfied this criterion.

Each code was run with the maximum (and lower)
values of EPS that resulted in acceptable agreement with
the standard solution. The computational work was
obtained by following the procedure outlined earlier.

Figures 3 and 4 present the computational work

(expressed as the CPU time in seconds required on the
NASA Lewis Research Center's IBM 370/3033 com-

puter) plotted against the local error tolerance EPS for

test problems 1 and 2, respectively. For all codes except
EPISODE and DASCRU, EPS is the local relative error
tolerance required of the numerical solution. For
EPISODE, EPS is a mixed relative and absolute error

tolerance--relative for species with initially nonzero mole

numbers and for temperature (method B) and absolute
for species with initially zero mole numbers4. For
DASCRU, EPS is absolute for variables whose

magnitude is less than 10-3 and relative otherwise. For

this study, because the maximum permissible local
relative error in the temperature calculated by using
method B was EPS, ERMAX (the relative error allowed

in the Newton-Raphson iteration procedure used in

4Because some mole numbers had zero initial values, pure relative

error control (option IERROR = 2) could not be used with EPISODE.

The option IERROR = 3 was used, instead. This is a semirelative error

control where, for a variable that is initially nonzero, the error control is

relative. For a variable that is initially zero, the error control is absolute

until the variable reaches 1 in magnitude, when the control becomes

relative. Since none of the mole numbers reaches a value of unity, the

error control is always absolute for species with initially zero mole

numbers. In CHEMEQ and CREKID, mole numbers less than 10 -20

were set equal to 10 -20. In addition, in CREK1D the convergence test

was applied only to species whose mole numbers are greater than l0 - 20

(appendix A).
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method A to solve the algebraic energy equation) was set
equal to EPS to make the two methods comparable. For
the same reason, with LSODE-B the absolute error

tolerance for the temperature was set equal to zero.
For test problem 1, very small values for the error

tolerance had to be used for GCKP84, EPISODE, and
DASCRU (fig. 3). Even with EPS = 10-6, EPISODE-A,

EPISODE-B, and GCKP84 did not accurately track the
temperature during ignition and heat release, when the
solution changed rapidly (fig. l). For EPS _> 5 x 10-6,
EPISODE predicted physically meaningless results--little

or no change from initial values after an elapsed time of
1 ms. However, with GCKP84 and DASCRU, although

higher values of EPS resulted in poor solutions during
ignition and heat release, the predicted solutions during
equilibration were satisfactory. For example, with

GCKP84 and DASCRU, values of EPS as high as
5 x 10-3 and 10-3, respectively, were adequate to track
the temperature in this regime with an error of less than

1 percent. The run with GCKP84 and EPS=10-2
exhibited serious instability and so was terminated.

Similar remarks apply to test problem 2 where, again,

small values of EPS had to be used with EPISODE-A,
EPISODE-B, and GCKP84 to track correctly the

temperature during ignition and heat release. During
equilibration, higher values for EPS could be used
without incurring error penalties. With EPISODE and
GCKP84, values of EPS equal to 10 -4 and l0 -2,

respectively, were adequate to follow the temperature
within 1 percent in this regime, although these runs did
not satisfy the accuracy criterion during ignition and heat

release. EPISODE-A and EPISODE-B predicted little or
no change in the composition and temperature after an

elapsed time of 1 ms for EPS greater than or equal to

5 x 10 -4 and 5 x 10 3, respectively. Although the runs
with EPISODE-B and EPS of 5 x 10-4 and 10-3 were

successfully completed, the solutions were considerably
inaccurate. Also, these runs were less efficient than the

run with EPS=5 x 10-5. For a more detailed study on
the variation of the CPU time with EPS, see references 30
and 31.

The selection procedure used above required that all

integrators track the solutions generated with LSODE.
This accuracy criterion is subject to the following two

objections: (1) it biases the test in favor of LSODE at the
expense of the other integrators, and (2) there is no

guarantee that LSODE is more accurate than the other
codes examined in this study. The other integrators were

therefore being required to track not the true solutions
(which are not known) but solutions that could be less

accurate than what they themselves generated. In other
words, the use of solutions generated with another

integrator might have resulted in the acceptance of some
runs that were rejected above. This possibility was

explored by further testing.

For codes5 that failed to satisfy the comparison with

LSODE, new standards were established. For every one
of these codes the solutions used as the new standards

were those generated by the code itself using a low value

for EPS. All runs that had previously been rejected were
then compared with these new standards, which were all
found to be essentially the same as the standard solutions

generated with LSODE. More specifically, the following
comparisons were made: for test problem 1 the runs with

GCKP84 and EPS _> 5 × 10-6 were compared with the
solution generated with GCKP84 and EPS = 10-8, and

the runs with CHEMEQ-B and EPS _> 5 x 10 -3 were

compared with the solution generated with CHEMEQ-B
and EPS=10-5. For test problem 2 the runs with
GCKP84 and EPS _> 5 x 10-5 were compared with the
solution generated with GCKP84 and EPS = 10-8, and
the runs with EPISODE-A and EPISODE-B with

EPS >__5 × 10-5 were compared with solutions generated
with EPISODE-A and EPISODE-B, respectively, and

EPS=10-6. In making these new comparisons the
selection criterion remained the same: namely, accept the
run if the predicted temperature-time profile is within 50
kelvins of the new standard. These additional

comparisons did not result in the acceptance of any run
that had previously been rejected. Furthermore, for test
problem 1 the run with GCKP84 and EPS = 10-6 failed

the 50 kelvin requirement when compared with GCKP84
and EPS = 10-8. These additional comparisons not only
support the use of solutions generated with LSODE as

standards, but also imply that LSODE, CREK1D, and
CHEMEQ-A are more accurate than the other codes.

Figures 3 and 4 illustrate the difficulty associated with

using a classical method (in this case the explicit Runge-
Kutta method used in DASCRU) to integrate combustion
kinetic rate equations. The CPU times required for the

two test problems were of the order of 1 and 15 min,
respectively. Using this technique would make
multidimensional modeling of practical combustion
devices prohibitively expensive.

For test problem 1 the difference in computational

work required by methods A and B was small (fig. 3),
with method B being more efficient. For test problem 2
(fig. 4) the difference was small for large values of EPS.
But for small values of EPS the difference was more

marked, with method A being significantly superior to
method B. The temperature-time profile was steeper for

test problem 1 (figs. 1 and 2), indicating a stronger

5These include GCKP84 and CHEMEQ-B for test problem 1 and
GCKP84, EPISODE-A, and EPISODE-B for test problem 2.
Although some runs with DASCRU-A and DASCRU-B also failed to
satisfy the comparisons with LSODE, the new tests were not applied to
DASCRU. The main purpose in using DASCRU was to illustrate the
difficulty associated with using classical methods to integrate
combustion kinetic rate equations.
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couplingbetweenthespeciesandthetemperature.This
mayexplainwhytheinclusionof thetemperatureasan
additionalindependentvariableworkedwell for test
problem1.Butfortestproblem2theadditionalworkin
computingthetemperaturerateandthetemperature-
dependenttermsin theJacobianmatrixdidnotleadto
increasedefficiency.

LSODEandCREK1Dweresuperiortotheothercodes
examinedin this study(figs. 3 and4). Comparing
EPISODEandGCKP84withCREK1DandLSODEwas,
however,difficultfor thereasonsdiscussedbelow.The
errorcontrolperformedbyEPISODEis differentfrom
thatperformedbytheothercodes.Asshownlater,for
problemsof thetypeexaminedin thisstudy,theerror
controlusedin EPISODEis inferiorto that usedin
LSODE.To attaincomparableaccuracyat earlytimes,
EPISODEmustusemuchlowervaluesof EPSthan
LSODE,aresultseenearlier.Nevertheless,wheninterest
wasrestrictedto computationalefficiency,EPISODE
wasanattractivealternativeto LSODEandCREK1D,
especially for test problem 2 (see ref. 30 for details). In
using EPISODE, however, a word of caution is in order.

The computational work can depend strongly on the
value for the initial step length H0 chosen by the user. A

poor guess for H0 can make EPISODE prohibitively
expensive to use, as shown for test problem 2 in table
VIII. Note an order-of-magnitude increase in the CPU

time for a change in H0 from 10-7 to 10-8. Although
not shown here, the solution was found to be adversely
affected by a poor choice for H0. Also, some values for

H0 resulted in problems with solution instability.
Comparing GCKP84 with CREK1D and LSODE was

difficult because of the much lower values of EPS used

by GCKP84. These low values were necessary to satisfy
the two independent accuracy criteria used above. For

test problem 1, GCKP84 was significantly slower than
EPISODE for the same value of EPS. For test problem 2
its speed was comparable to those of LSODE-B and

EPISODE-B for the same values of EPS. For larger

TABLE VIII.--EFFECT OF INITIAL STEP LENGTH ON

WORK REQUIRED BY EPISODE-A (EPS= 10 -5) FOR
TEST PROBLEM 2

Initial Total Total

step number number

length, of steps of functional

H0, required, evaluations,
s NSTEP NFE

10 -5 129 237

10 -6 129 231

10 -7 126 225

10 -s 1168 2355

10 9 1170 2394

I0 -1° 133 231

Total Total

number of CPU

Jacobian time

matrix required,

evaluations, CPU,

NJE s

33 0.79

31 .78

36 .79

353 7.91

362 8.04

32 .77

values of EPS, however, GCKP84 was significantly
slower than LSODE, EPISODE, and CREK1D (ref. 30).

It should be emphasized that GCKP84 is a general-
purpose chemical kinetics code designed to solve a variety

of chemical kinetics problems. Consequently the
overhead associated with functional and Jacobian

evaluations is higher for GCKP84. In spite of the extra
work required per step GCKP84 has been shown to be an

efficient code for performing a wide variety of chemical
kinetics calculations (ref. 18).

Computational Tactics

A simple way of increasing the efficiency of the

algorithms as applied to the present problem was
explored. Experience with CHEMEQ-A showed that

computing the rate constants kj [=AjT Nj exp (- Tj/T)]

and.k__ [=A_jTN-j exp (-T_j/T)] every time the
spectes ttme derivatives are evaluated is quite inefficient.

Note that evaluating the rate constants necessitates
computing both the exponential terms in the expressions

for kj and k_j (eqs. 5(a) and 6(lo)) and the fifth-order
polynomial expression used for the Gibbs functions (ref.
26). To reduce the computational work associated with

evaluating the rate constants, these were updated only
when the temperature change exceeded a value AT.
Shown in table IX are the CPU times for various values

of AT using CHEMEQ-A on test problem 1. Note the
substantial decrease in computational work--a value of

AT= 0.1 kelvin resulted in about a 40-percent decrease in
both the number of steps and the number of function
evaluations. Furthermore the number of rate constant
evaluations NRRC decreased from 27 736 to 2578 for

AT= 0.1 kelvin. These reductions in computational work
resulted in about a 70-percent decrease in the CPU time
required to solve the problem.

TABLE IX.--EFFECT OF MAXIMUM TEMPERATURE

CHANGE ALLOWED BEFORE REACTION RATE

CONSTANT UPDATE ON WORK REQUIRED BY

CHEMEQ-A (EPS = 10 -3) FOR
TEST PROBLEM 1

Maximum Total

temperature number

change, of steps

AT, required,
kelvin NSTEP

(a) 13 272
0 13 272

.05 8 061

.1 8 030

.5 13 582

1 13 974

(b) 8 027

aNot used.
bCalculated by using eq. (16).

Total Total

number of number of

functional reaction rate

evaluations, constant

NFE evaluations,

NRRC

27 736 27 736

27 736 18 624

17 131 3 693

17 103 2 578

28 394 953

29 300 627

17 107 2 827

Total

CPU time

required,

CPU,

s

28.4

24.8

10.4

10.0

14.4

14.7

9.3
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In selecting a value for AT, care must be taken to avoid

poor approximations in the resulting reaction rates,
which leads to excessive computational work. Table X
presents an example of such a case. A value of AT as

small as 1 kelvin resulted in an order-of-magnitude
increase in the CPU time required to solve the problem.
The selection of an optimum value for AT--defined as

that value which results in minimum computational
work--is therefore a trial-and-error process, with it being
a function of the problem and the error tolerance
specified.

To avoid repeated runs of the program in search of the
optimum value for AT, an approximation for it was

developed. The results are given below and details are
presented in appendix C. By requiring that the maximum
relative error in the resultant reaction rates not exceed the

required relative error tolerance EPS, the following
expression for AT was derived:

EPS T

AT= (16)

mjax[ TJ + Nj;T -_-J+N_j[

where Tis the current value of the temperature, the bars

I I denote absolute value, and the maximum is taken over
all forward and reverse reactions.

Every time the reaction rate constants were evaluated,
which occurred only when the temperature change (since

the last update of the rate constants) exceeded AT, a new
value of T could be calculated from equation (16). Thus

equation (16) provides a simple expression for the
automatic evaluation (through the history of the

problem) of AT. The computational work resulting from

the use of equation (16) is given in tables IX and X.
Although using equation (16) did not necessarily result in
the fastest algorithm, it did result in shorter CPU times.

For CHEMEQ-A this decrease was significant; but for
reasons discussed below, it was small for LSODE-A.

Using equation (16) resulted in significant savings for
CHEMEQ and DASCRU for all values of EPS used in

this study. But with EPISODE and LSODE the savings
were found to be small, especially when low values of
EPS were used. The decreases in CPU time were more

significant for CHEMEQ and DASCRU because these
two codes require many more reaction rate evaluations

(NRRC in tables XI and XII) than EPISODE and
LSODE. For EPISODE and LSODE the computational

work required for evaluating AT by equation (16) is
therefore a greater fraction of the work saved by not

updating the rate constants than for CHEMEQ and
DASCRU. In addition, when EPS was small, the
resulting AT has such small values that the decrease in

NRRC (and hence in computational work) is not
sufficient to offset the work required to update AT. This
update occurs more often as EPS is decreased.

In incorporating equation (16) into codes that use

temperature method B, the following attempt at further
reducing the computational work was made. In addition

to updating the rate constants only for temperature
changes greater than AT, the thermodynamic properties

h i and cp, i (eq. (8)) were updated only for temperature
changes greater than AT. This reduced the work

associated with computing the fifth-order polynomial

approximations used in evaluating h i and cp, i (ref. 26).
For CHEMEQ-B and DASCRU-B this resulted in

increased efficiency for all values of EPS used in this
study. But for LSODE-B and EPISODE-B no consistent
differences could be observed. Hence with LSODE-B

and EPISODE-B the thermodynamic properties were

TABLE X.--EFFECT OF MAXIMUM TEMPERATURE

CHANGE ALLOWED BEFORE REACTION RATE

CONSTANT UPDATE ON WORK REQUIRED

BY LSODE-A (EPS = l0 -4) FOR
TEST PROBLEM I

Maximum Total

temperature number

change, of steps

AT, required,

kelvin NSTEP

(a) 206

0 206

.05 227

• 1 220

.5 438

1 1224

0o) 213

aNot used.

bCalculatedby using eq. 06).

Total Total

number of number of

functional Jacobian

evaluations, matrix

NFE evaluations,

NJE

293 33

293 33

317 32

296 34

642 109

2163 550

289 31

Total number

of reaction

rate constant

Total CPU

time

required,

evaluations, CPU,

NRRC s

326 0.63

263 .58

203 .58

171 .54

209 1.12

317 3.88

224 .57
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TABLE XI.--WORK REQUIRED FOR TEST PROBLEM 1

Method

GCKP84

CREK1D

LSODE-A

LSODE-B

EPISODE-A

EPISODE-B

CHEMEQ-A

CHEMEQ B
DASCRU-A

DASCRU-B

[Given CPU times represent minimum time required by each code to solve test problem 1.]

Error Relative Initial Total Total

tolerance, error step number number of

EPS tolerance, length, of steps functional

ERMAX H0, required, evaluations,
s NSTEP NFE

10 6 (a) bl0 6 309

10 - 2 (a) (a) 84

10 -2 10 2 (a) 114

5 x 10 -3 cO (a) 101

10 6 10 -2 10 -1° 244

10 -6 (a) 10 9 248

10 2 10-2 (a) 6 741

10 -3 (a) (a) 11 884
10 -5 10 2 10 -7 12 997

10 5 (a) 10 7 12 822

684

280

165

156

463

460

13 963

24 943

7O 075

69 185

Total number

of Jacobian

matrix

evaluations,
NJE

54

32

27

27

41

36

0

Total number

of reaction

rate constant

evaluations,

NRRC

684

91

105

113

435

447

735

2 638

31 395

31 827

Total CPU

time

required,

CPU,

s

3.13

.23

.32

.32

.70

.68

6.58

9.82

43.2

35.5

aNot needed.
bDefauh value.
CAbsolutc error tolerance for temperature.

Method

TABLE XII.--WORK REQUIRED FOR TEST PROBLEM 2

[Given CPU times represent minimum time required by each code to solve test problem 2.]

Error Relative

tolerance, error

EPS tolerance,
ERMAX

GCKP84 10- 5

CREK1D 10 -3

LSODE-A 10- 2

LSODE-B 10 -2

EPISODE-A 10 5

EPISODE-B 10 5

CHEMEQ-A 10 2

CHEMEQ-B 10 2
DASCRU-A 10 3

DASCRU-B 10 -3

aNot needed.
bDefault value.
CAbsolute error tolerance for temperature.

(a)

(a)

10 2

co

10 4

(a)
10-2

(a)
10-2

(a)

Initial Total

step number

length, of steps

H0, required,

s NSTEP

bl0 6 137

(a) 140

(a) 87

(a) 72

10 -6 127

10 -9 145

(a) 8 167

(a) 8 745

10 -9 94 596

10 -9 94 627

Total

number of

functional

evaluations,

NFE

313

439

Total number

of Jacobian

matrix

evaluations,

NJE

34

138

Total number

of reaction

rate constant

evaluations,

NRRC

313

214

Total CPU

time

required,

CPU,

s

3.06

1.04

137

126

227

303

17 033

18 213

594 640

593 940

26

22

31

34

0

87

75

229

273

1 171

974

11 666

11 057

.47

.45

.71

.86

13.7

12.0

400

310

updated every time the derivatives and the Jacobian

matrix were evaluated. But with CHEMEQ-B and

DASCRU-B these properties were evaluated only when

the rate constants were updated.6 We note here that

CREK1D allows for a user-specified ATand both the rate

constants and the thermodynamic properties are updated

only for temperature changes greater than AT.

The changes discussed above were incorporated into

CHEMEQ, DASCRU, EPISODE, and LSODE. The

computational work required by each code for test

6With method A, since a Newton-Raphson iteration technique was

used to compute the temperature, the thermodynamic properties were

updated every time the derivatives and the Jacobian matrix were

evaluated.

problems 1 and 2 is presented in tables XI and XII,

respectively. For temperature method A, ERMAX was

allowed to be different from EPS (cf. figs. 3 and 4) and

the value resulting in the least computational work was

used. For LSODE-B the value for the absolute error

tolerance for the temperature was chosen similarly.

Tables XI and XII present the values for the user-

specified parameters that result in the least

computational work. The CPU times given in tables XI

and XII represent the minimum time required by each

code to solve test problems 1 and 2, respectively.

Comparing tables XI and XII with figures 3 and 4

shows the savings realized by using equation (16). For

DASCRU (classical Runge-Kutta method) and

CHEMEQ the decreases in CPU time were significant,
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ranging from about 30 to about 65 percent. For LSODE
and EPISODE the decreases were more modest, ranging
from negligibly small to about 20 percent.

Tables XI and XII show that CREK1D was the fastest

code for test problem 1, and LSODE for test problem 2.
Note that although CREK1D is only marginally faster

than LSODE for problem 1, it is significantly slower for
problem 2. We therefore conclude that LSODE is the

fastest code currently available for integrating chemical
kinetic rate equations. LSODE is faster than CREK1D
because of (1) better step length control, especially at

early times (see the section Step Length Comparisons for
details) and (2) less frequent update of the Jacobian. For
test problem 2, CREK1D requires 138 Jacobian

evaluations, whereas LSODE-B requires only 22
Jacobian evaluations (table XII). The main difficulty in

using LSODE is the trial-and-error procedure necessary
to obtain optimum values for the absolute error
tolerances for a given value of EPS.

Accuracy Comparisons

The standard solutions established in the section

Accuracy Estimate and given in tables IV and V were

used to compare the accuracy of the algorithms examined
in this study. Tables XIII and XIV give the differences
from the standard solutions, in percent, for the solutions
obtained with the optimized codes. The values chosen for

the user-specified parameters are given in tables XI and
XII for test problems 1 and 2, respectively. As expected,

all temperature predictions were in close agreement with
the standard solutions, except for the immediate
postinduction solutions with GCKP84 and EPISODE.

Unlike the other codes CHEMEQ tracked the
temperature more accurately during induction and heat

release than during equilibration. During equilibration all
other codes tracked the temperature well, with GCKP84
and EPISODE being superior to the other codes because
of the use of a much smaller error tolerance. These

temperature differences show that even for solutions
generated with large values of EPS, the differences be-

tween temperature methods A and B were insignificant.
Furthermore, for test problem 1, solutions generated
with EPISODE-A and DASCRU-A were as accurate as

those generated, respectively, with EPISODE-B and

DASCRU-B, although ERMAX was much larger than
EPS (table XI). Similar remarks apply to test problem 2
and the runs with EPISODE and DASCRU.

The numbers in parentheses in tables XIII and XIV are

values for the percent differences obtained by ignoring all
species with standard solution values for mole fractions
less than 10-7. This was done because the selection

criterion used in the section Efficiency Comparisons
involved only species with mole fractions greater than or

equal to 10-7. All mole fractions were larger than 10-7

16

for times t greater than or equal to 5 × 10-5 and 10 -4 for

test problems 1 and 2, respectively.
The mole fraction differences from the standard

solutions were largest at times immediately after ignition
and during heat release because the solutions were

changing rapidly in these regimes. During ignition and
heat release GCKP84 and EPISODE were inferior to the

other codes. However, at longer times they were superior
to the other codes. These results for species mole
fractions are consistent with the solutions for the

temperature. In addition, as discussed in the section

Efficiency Comparisons, although the use of larger error
tolerances gave poor solutions during ignition and heat
release, the predicted solutions were satisfactory at longer
times. Hence, where the main objective of modeling is to

predict pollutant (e.g., NOx) formation, the user can
specify fairly large error tolerances without incurring
severe error penalties. Again, we note that the differences

between the solutions generated with methods A and B

(and the same value of EPS) are not significant. Among
the codes that use a large error tolerance, CHEMEQ was
the most accurate during ignition and early heat release;
during late heat release and equilibration, LSODE and
CREKID were superior to the other codes.

EPISODE was inferior to LSODE and CREK1D at

early times because of the difference in the error control
performed by these codes. In contrast to the other codes

for which EPS is the local relative error tolerance, EPS is
a mixed error tolerance for EPISODE; that is, it is

relative for species with nonzero initial mole numbers and
absolute otherwise. Since most of the species had zero
initial mole numbers for both problems examined in this

study (tables IV and V), the error control performed by
EPISODE was mostly absolute. For pure relative error

control the estimated local truncation error Ei in species i
satisfies

Ei <-ereln i (17)

where erel is the local relative error tolerance. For pure
absolute error control E i satisfies

Ei_eab s (18)

where Cabs is the local absolute error tolerance. Equations

(17) and (18) show that, since n i < < 1, relative error
control is more accurate for the same value of the local

error tolerance. In other words, to attain comparable

accuracy for mole numbers that were initially zero,
EPISODE requires lower values of EPS than the other
codes. Equations (17) and (18) also show that the error

controls are of comparable accuracy for n i of order
O(eabs/erel), a result that can be used to examine the

difference in accuracy attained by EPISODE and



TABLE XIII.--DIFFERENCES FROM STANDARD SOLUTIONS FOR

TEST PROBLEM 1

[Numbers in parentheses are values obtained by ignoring species with mole fractions less than

10 7.]

Method

9x10 6 10 5

GCKP84

CREK1D

LSODE A

LSODE-B

EPISODE-A

EPISODE-B

CHEMEQ-A

CHEMEQ-B

DASCRU-A

DASCRU-B

Time, t, s

5xlO I 104 15x104I 103
Difference in mole fractions, (rms), percent

2.076 0.795 0.138 0.121

.502 .515 .274 .257

•619 .700 .512 .122

•871 .764 .335 .184

2.157 .784 .0873 .0701

2.182 .791 .0881 .0725

10.48 15.64 32.72 42.17

5.306 10.39 19.17 20.80

1.174 .435 .225 .350

1.183 .430 .232 .391

4.00l x 103

(266.0)

689.5

(3.965)

766.6

(10.05)

2.002 x 106

(10.32)

4.781 x 103

(310.4)

7.702 × 104

(317.2)

647.1

(0.305)

649.4

(0.154)

1.785 x 103

(107.8)

1.819 x 103

(110.8)

3.866 x 104

(228.8)

2.822 × 103

(4.008)

3.082 x 103

(9.280)

1.044 x 10 l°

(9.687)

5.659 x 104

(267.0)

6.789 x 107

(273.0)

2.618 x 103

(0.299)

2.622 x 103

(0.150)

9.228 × 103

(94.66)

9.486 × 103

(97.14)

Difference in mole fractions (maximum), percent

5.528 1.957

-.862 .893

- 1.398 - 1.498

- 1.695 - 1.624

5.749 1.895

5.814 1.917

19.08 28.49

8.920 18.32

3.082 .953

3.114 .953

1.282 x 105

(330.7)

9.359 x 103

(5.746)

1.022 x 104

(13.10)

3.464 x 10 l°

(14.25)

1.877 x 105

(386.5)

2.252 x 108

(395.1)

8.683 x 103

(0.440)

8.695 x 103

( -- 0.208)

3.060 X 104

(135,2)

3.146)<104

(138.8)

GCKP84 1.324 x 104

(374.5)

CREK1D 2.285 x 103

(5.485)

LSODE-A 2.541 x 103

(13.72)

LSODE-B 6.641 × 106

(14.42)

EPISODE-A 1.583 x 104

(439.6)

EPISODE-B 2.555 x 105

(449.6)

CHEMEQ-A 2.144 x 103

( - 0.446)

I CHEMEQ-B 2.152× 103

(- 0.236)

DASCRU-A 5.911 × 103

(148.8)

DASCRU-B 6.022 x 103

(153.0)

0.899

.0497

.0587

.0588

1.107

1.137

.0365

.0333

.300

.300

Difference in temperatures, percent

0.208 0.0795

.0606 .0357

.0951 .0840

.136 .103

.204 .0628

.207 .0634

- 1.466 - 1.635

.449 .904

.0831 .0398

.125 .0398

GCKP84

CREK1D

LSODE-A

LSODE-B

EPISODE-A

EPISODE-B

CHEMEQ-A

CHEMEQ-B

DASCRU-A

DASCRU-B

4.572

.111

.172

.177

5.548

5.697

.0430

.0409

1.590

1.590

0.451 0.360

-.584 .598

- 1.033 -.234

-.697 .459

.285 .209

.288 .212

- 56.32 -72.11

36.89 40.45

-.397 -.595

-.424 -.684

0 0.0381

.0333 .0322

.0448 .0360

.0501 .0442

.00629 .0236

.00620 .0236

- 1.917 -2.163

1.491 1.539

-.0381 0

-.0381 -.0381
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TABLE XIV.--DIFFERENCES FROM STANDARD SOLUTIONS FOR TEST PROBLEM 2

[Numbers in parentheses are values obtained by ignoring species with mole fractions less than 10-7.]

Method Time, t, s

3x10 -6 5×10 -6 10 5 5x 10-5 10-4 5×10-4 10-3

Difference in mole fractions (rms), percent

GCKP84

CREK1D

LSODE-A

LSODE-B

EPISODE-A

EPISODE-B

CHEMEQ-A

CHEMEQ-B

DASCRU-A

DASCRU-B

143.6

(103.2)

4.106

(1.089)

11.62

(8.642)

653.9

(30.83)

105.7

(76.26)

157.3

(101.0)

3.830

(0.198)

3.839

(0.234)

30.17

(23.24)

30.18

(23.24)

8.772 x 107

(15.98)
3.570 x 107

(0.504)
4.486 × 107

(1.977)
10.85

(7.167)
7.612 × 107

(14.11)
8.743 × 10 7

(15.87)

3.457 × 107

(0.0893)

3.447 × 107

(0.138)
10.23

(7.541)
1.247 x 107

(7.085)

8.447

(5.925)

0.322

(0.222)

10.62

(8.086)

12.45

(8.741)

6.996

(4.806)

8.542

(5.883)

0.0528

(0.0382)

0.103

(0.0735)

25.90

(1.829)

2.615

(1.787)

0.731

(0.723)

0.0458

(0.0435)

0.444

(0.380)

1.854

(1.584)

0.798

(0.621)

O. 947

(0.737)

2.885

(2.570)

1.591

(1.433)

0.362

(0.280)

0.261

(0.201)

0.615

.0459

1.011

2.159

.276

.358

10.25

5.990

8.571

.564

0.852

.213

.0721

.563

.0358

.0260

26.71

25.40

.477

.641

0.835

.297

.170

.592

.0449

.0174

37.85

38.50

9.640

7.164

Difference in mole fractions (maximum), percent

GCKP84

CREK1D

LSODE-A

LSODE-B

EPISODE-A

EPISODE-B

CHEMEQ-A

CHEMEQ-B

DASCRU-A

DASCRU-B

317.5

(164.2)

- 10.382

(1.728)
21.85

(13.64)

1.987 x 103 !

(48.95)

222.4

(121.5)
309.8

(160.7)
- 12.32

(- 0.334)
- 12.51

( - 0.402)

57.47

(38.03)

57.50

(38.03)

3.397 x 108

( - 26.75)

1.383 x 108

( - 0.854)

1.738 × 108

( - 3.207)

30.55

(- 12.25)

2.948 x 108

( - 24.06)
13.386 x 108

( - 26.87)

1.339 × 108

(0.177)

1.335 x 108

(0.256)
23.44

(- 14.62)

4.830 × 107

( - 11.89)

21.03

(21.03)
0.768

(0.768)

29.12

(29.12)

36.45

(31.51)

17.13

(17.13)

20.97

(20.97)

-0.151

( - 0.129)

-0.281

( - 0.260)

- 100.0

(6.530)

6.359

(6.359)

1.471 - 1.396

(1.471)
-0.101 -.122

(-0.101)
0.965 - 1.706

(0.934)
4.051 3.932

(3.821)
2.034 .717

(1.820)
2.422 .898

(2.179)
-6.203 -20.52

( - 6.203)
-3.034 11.18

( - 2.731)
0.934 33.19

(0.840)
0.674 -2.174

(0.630)

- 1.622

- .446

.144

1.229

.0684

.0621

- 46.38

44.45

.957

- 1.244

- 1.764

- .609

.382

1.203

.131

.0303

- 63.40

65.14

37.25

27.24

Difference in temperatures, percent

GCKP84

CREK1D

LSODE-A

LSODE-B

EPISODE-A

EPISODE-B

CHEMEQ-A

CHEMEQ-B
DASCRU-A

DASCRU-B

0.333

.00477

.0306

.105

.261

.344

.00486

-.00189

.0665

.0665

2.203 0.733 0.0795

.0875 .0152 -.00135

.370 -.266 .146

1.017 -.140 .310

1.856 .635 .0739

2.194 .770 .0910

.0209 -.0227 -.524

.0108 -.0288 -.107

.796 .262 .0398

.796 .262 0

0

.0218

.203

.373

.0361

.0466

- 1.381

.0265

.0367

0

0

.0126

- .0179

.0704

- .00448

- .00447

- 1.025

1.283

0

.0687

0

-.00641

-.0282

.0406

-.00292

-.00421

-1.227

1.678

.0687

-.138
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LSODE, for mole numbers that are initially zero. Using
the values for the error tolerances given in tables XI and

XII, we found that the two codes were of comparable
accuracy for n i of order O(10 -4) and O(10-3) for test

problems 1 and 2, respectively. It should be emphasized
that these values are only estimates because the two codes
control the root-mean-square norm of the estimated local

errors and not the estimated local error for each species.
These estimates for mole numbers correspond to mole

fractions of order O(10-3) and O(10 -2) for test
problems 1 and 2, respectively, assuming a mixture mean

molar mass of order O(10). Tables IV and V and figures 1
and 2 show that these values were not attained at early
times by species with initial zero mole numbers. Hence

EPISODE is expected to be inferior to LSODE during
ignition and early heat release. However, during late heat
release and equilibration, when many of the mole

numbers exceed these values, EPISODE is expected to be
superior to LSODE. Examination of tables XIII and XIV

confirms this behavior. We note that, relative to LSODE,
EPISODE was (1) inferior at short times, (2) superior at
long times, and (3) comparable at intermediate times.

These observations imply that the error control used by
EPISODE is unsatisfactory for problems of the type
examined in this study. Many of the variables have zero

initial values and they never reach unity. The nature of
the error control performed by EPISODE therefore

requires small values of EPS for acceptable accuracy at
short times. The continued use of these small values of

EPS at long times is wasteful because it results in
solutions that are more accurate than required by the

selection criterion. A simple method for increasing the
efficiency of EPISODE is therefore to switch to pure
relative error control (IERROR = 2) with a larger value of

EPS once the species mole numbers have reached
acceptable values. Tables XV and XVI present the effects

of such a switch. In these tables, tswitch is the time at
which the switch was made. The program was run up to

TABLE XV.--EFFECT OF SWITCH TO PURE RELATIVE ERROR

CONTROL ON COMPUTATIONAL WORK REQUIRED FOR

TEST PROBLEM 1

(a) EPISODE-A

Time at Total

which number

error of steps

control is required,

switched, NSTEP

tswitch,

s

10 -5 121

1.5 × 10 -5 150

2x10 5 164

2.5x 10 -5 175

5x10 -5 194

10 4 209

5 X |0 4 236

al0 3 244

Total

number

of

functional

evaluations,

NFE

223

290

314

332

369

394

444

463

Total

number

of Jacobian

matrix

evaluations,

NJE

39

40

40

40

42

41

44

41

Total Total

number of CPU

reaction time

rate required,

constant CPU,

evaluations, s
NRRC

175 0.37

273 .48

294 .51

304 .53

347 .58

367 .62

415 .68

435 .70

(b) EPISODE-B

Time at Total Total

which number number

error of steps of

control is required, functional

switched, NSTEP evaluations,

tswitch, NFE
s

1.5×10 -5 140 257

2x10 -5 148 278

2.5× 10 5 157 292

5×10 -5 181 340

10 -4 201 367

5 × 10 -4 234 436

a 10 - 3 248 460

aNo switching performed.

Total

number

of Jacobian

matrix

evaluations,

NJE

37

37

36

37

39

41

36

Total

number of

reaction

rate

constant

evaluations,
NRRC

240

258

277

322

350

413

447

Total

CPU

time

required,

CPU,

s

0.43

.45

.47

.53

.57

.66

.68
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TABLEXVI.--EFFECTOFSWITCHTOPURERELATIVEERROR

CONTROL ON COMPUTATIONAL WORK REQUIRED FOR
TEST PROBLEM 2

(a) EPISODE-A

Time at Total Total

which number number

error of steps of

control is required, functional

switched, NSTEP evaluations,

/switch, NFE

s

3×10 6 92 167

4X10 -6 119 212

5xl0 6 101 186

10 -5 112 204

5xl0 s 118 218

10 4 I25 227

5 x 10 4 128 233

a10-3 127 227

Total

number

of Jacobian

matrix

evaluations,

NJE

35

35

31

36

34

35

35

31

Total Total

number of CPU

reaction time

rate required,

constant CPU,

evaluations, s

NRRC

132 0.53

172 .64

168 .58

188 .65

204 .68

215 .72

219 .72

229 .71

(b) EPISODE-B

Time at Total Totalwhich number number

error of steps of

control is required, functional

switched, NSTEP evaluations,

tswitch, NFE
S

4x10 6

5x10 -6

10 5

5×10 5

10 4

5x10 -4

al0 3

88 173

104 215

119 221

127 242

130 248

142 296

145 303

ler_rmed.aNo switching

Total

number

of Jacobian

matrix

evaluations,
NJE

30

32

36

32

33

37

34

Total

number of

reaction

rate

constant

evaluations,

NRRC

140

170

191

219

229

258

273

Total

CPU

time

required,

CPU,

S

0.54

.62

.67

.71

.73

.84

.86

time t=tswitch with IERROR=3 and EPS of 10-6 and

10-5 for test problems 1 and 2, respectively. At t = tswitch

the integrator was reinitialized, the error control was

switched to IERROR=2, and EPS was increased to

10- 2. The problem was then run to completion with these

new values for IERROR and EPS. Note the significant

decreases in the computational work obtained by

switching to pure relative error control. The resultant

CPU times compare favorably with those required by

LSODE. This switching process is, however, unsat-

isfactory for the following reasons:

(1) The value of tswitch that minimizes the CPU time is

a function of the problem and the temperature method

used. Moreover, a poor choice for tswitch can make the

run prohibitively expensive. For example, for test

problem 1 the run with EPISODE-B and tswitch = 10-5

was not successfully completed even after a CPU time of

2 min.

(2) The switching requires unnecessary computational

2o

work associated with the reinitialization and restart of the

integrator.

(3) Using low values of EPS for t_<tswitch results in

tighter error control than is necessary to satisfy the

accuracy criterion for species with initially nonzero mole

numbers and for the temperature.

A more appropriate error control for problems of the

type examined in this study is therefore one that is

absolute for mole numbers that are initially zero and that

automatically becomes relative once these mole numbers

reach acceptable values. The error control should also be

relative for species with initially nonzero mole numbers

and for the temperature. Such an error criterion can be

realized by requiring E i to satisfy

Ei <- erelni + eabs,i (19)

where Cabs, i is the local absolute error tolerance for
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Figure 5.--Variation with time of the step length successfully used by GCKP84, CREK1D, EPISODE, and LSODE for test problem 1.

species i. For values of r/i < (eabs,i/erel) the error control

is mostly absolute, and for n i > (eabs,i/erel) it is mostly
relative. This is, in fact, the nature of the error control
used in LSODE; it is therefore more efficient than

EPISODE for integrating combustion kinetic rate

equations.

Step Length Comparisons

All codes used in the present study automatically select

a step length during the course of the integration. Some
of the codes (GCKP84, DASCRU, and EPISODE)

require trying a user-supplied initial value. The other
codes automatically select the value for the initial step

length. The size of the step successfully used by the code
indicates both the efficiency of the code and regions
where difficulties due to stiffness arise. Figures 5 to 8

present plots of the step length used by each code through
the course of each problem. To facilitate comparisons

(among the faster codes) at early times for test problem 2,
figure 9 presents the variation of the step length between
t = 10-6 and t= 10-5.

Figures 6 and 8 illustrate the small steps that classical
methods have to use to ensure solution stability. For both

test problems the explicit Runge-Kutta technique used
small step lengths to track the solutions through
induction and heat release. During equilibration the step

lengths remained small, and thus prohibitive amounts of

computer time were required. The difficulties with
CHEMEQ (figs. 6 and 8) included the selection of a very
small initial step length, the continued use of small step

lengths because of the very small increases allowed after
satisfactory convergence, and its inability to select a

suitable step length during equilibration. Much computer
time was wasted in the search for an appropriate step

length. In addition, the search was restricted to very small

step lengths. These factors make CHEMEQ very

expensive to use.
We note that all codes use small steps during induction

and early heat release. In these regimes the species and

temperature change rapidly (figs. 1 and 2). Most of the

species and temperature have positive time constants--an
indication that the differential equations are unstable.
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(a) CHEMEQ-A. (b) DASCRU-B.

Figure 6.--Variation with time of the step length successfully used by CHEMEQ-A and DASCRU-B for test problem 1.
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Figure 7.--Variation with time of the step length successfully used by GCKP84, CREK1D, EPISODE, and LSODE for test problem 2.



10-3

F

10-4

10-5

10-6

10-7

i0-8

i0-9

(al (b)10 -10 illllll i illlllLi k liilllll i _lllLl[I I IiIIIIII I IIIIliH I IIIIHU I I IIIIIll I I IH"" I II1.1. I iiHIm I Illlllll I Ill Ltlll i JlllllU

10-10 10-9 i0-8 10-7 i0-6 i0-5 10-4 i0-3 lo-lO i0-9 10-8 10-7 10-6 i0-5 10-4 10-3

Time.t.s

(a) CHEMEQ-B. (b) DASCRU-A.

Figure 8.--Variation with time of the step length successfully used by CHEMEQ-B and DASCRU-A for test problem 2.
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Figure 9.--Variation with time of the step length successfully used at early times by GCKP84, CREKID, EPISODE-A, and LSODE-A for test

problem 2.
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Hence the step lengths are constrained to small values.
For test problem 1, EPISODE was superior to

GCKP84 and CREK1D was superior to LSODE. Note
that although in the postinduction regime EPISODE

selected steps comparable to those selected by LSODE,
its difficulty in tracking the solution during ignition and
early heat release made it less efficient than LSODE. For

test problem 2, at long times, CREK1D took step lengths

comparable to those of LSODE. However, at times
preceding and immediately after ignition (t=3 _s),
CREK1D took much smaller step lengths and was hence
less efficient than LSODE. Although not presented

herein, the run with CREK1D and EPS = 10 -2 showed
that this code had difficulty selecting a suitable step

length at early times. Much computer time was wasted by
repeatedly unsuccessful attempts at selecting a larger step
length. This run was therefore less efficient than the one

with EPS=10-a (fig. 4). The step lengths selected by
EPISODE were comparable to those selected by

GCKP84, although the former used larger steps initially.
The results discussed above indicate that the step

length to be used is regime dependent: during induction

and early heat release, when the solution changes rapidly,
small steps have to be taken to ensure solution stability.
The search for large step lengths is both futile and

expensive. At later times, however, when the differential
equations are more stable, larger step lengths can be

used. In these regimes it is worth attempting to use a
larger step length after every step.

Summary of Results and Conclusions

Several algorithms (GCKP84, CREK1D, LSODE,

EPISODE, CHEMEQ, and DASCRU) for numerically
integrating stiff ordinary differential equations arising in
combustion chemistry have been compared. The
following performance indicators were recorded for

purposes of this comparison:

(1) Total number of steps required to solve a problem
(2) Total number of derivative evaluations

(3) Total number of Jacobian matrix evaluations
(4) Total number of rate constant evaluations
(5) Total CPU time required to solve a problem

In addition, the errors relative to reference solutions

(generated with LSODE with a very low relative error
tolerance) were recorded at selected times. These tests

were conducted on two combustion kinetics problems:
one involving 11 species and temperature with 12 reac-
tions, and the other involving 15 species and temperature

with 30 reactions. Both problems included all three
combustion regimes: induction, heat release, and
equilibration.

This study has shown that for comparable accuracy the
fastest package currently available for integrating
combustion kinetic rate equations is LSODE. This merits

special notice because LSODE was developed as a
multipurpose stiff differential equation solver with no

one particular application as its objective. Its disadvan-
tages, however, include a large storage requirement and a
relatively long startup time. Where storage is a significant

problem, both EPISODE and CREK1D are attractive
alternatives. However, a poor guess for the initial step

length to be tried by the integrator can make EPISODE
prohibitively expensive to use. It can also result in
incorrect and unstable solutions. Some experimentation
with different values for the initial step length may be

necessary to obtain its optimum value. In addition, the
error control performed by EPISODE was found to be
unsatisfactory for problems of the type examined in this

study. For acceptable accuracy at short times small values
of the error tolerance had to be used. Significant

decreases in computational work were obtained by
switching to pure relative error control in the

postinduction regimes. An error control that is more
appropriate for combustion kinetics problems is required
for additional increases in computational efficiency. The
code CREK1D needs refinement in the area of step-

length selection, especially at early times, before
significant increases in its speed can be realized.

The step length to be used in integrating combustion
kinetic rate equations was found to be regime dependent.
During induction and early heat release, small steps had
to be taken to ensure solution stability. At later times,

however, when the differential equations were more
stable, larger steps could be used.

An important conclusion from this study is that using
an algebraic energy conservation equation to calculate

the temperature does not result in significant errors or
inefficiencies. On the contrary, this method can be more
accurate and efficient than evaluating the temperature by

integrating its time derivative.
Another important conclusion is that, where the

objective of modeling is to predict pollutant (e.g., NOx)
formation, the user can specify large error tolerances
without incurring significant error penalties.

A simple method for realizing significant efficiency
increases was demonstrated. This involved updating the

reaction rate constants only for temperature changes

greater than an amount that was problem dependent. An
expression for the maximum temperature change allowed
before such an update was presented and shown to result

in significant savings.

Lewis Research Center

National Aeronautics and Space Administration
Cleveland, Ohio, June 6, 1984
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Appendix A

Outline of Methods Studied

The ordinary differential equations (2) and (8)
describing homogeneous gas-phase chemical reactions
can be generalized as follows:

)i = _-_ ----fi(Yk) i,k = 1,N

Yi (t = O) = Yi (0) = given

(A1)

where for temperature method A (see the section
Evaluation of Temperature)

Yi=ni i= 1,NS

N= NS

(A2)

and for temperature method B

this study, some (CHEMEQ, CREK1D, and DASCRU)

are single-step methods; the rest (EPISODE, LSODE,
and GCKP84) are multistep methods. A single-step

method provides a rule for computing Y_n at tn from a

knowledge of the step length hn and the solution Y_n- 1 at
the previous step tn_ 1. A multistep method, on the other

hand, uses hn and the solution at several earlier points to
generate Y_n. For example, the K-step method uses hn and

the K earlier values Y_n- 1,Y_n- 2 .... , Y_n- K (at times tn _ 1,

tn-2, ..., tn-K) to compute Y_n. Since at the outset only
the initial conditions y(0) are known, multistep methods
are not self-starting. EPISODE and LSODE resolve this

difficulty at the initial point by starting with a single-step,
first-order method. As the integration proceeds, the

solutions that they generate provide the necessary values
for a multistep method.

We now outline the methods studied in the present
work. In particular, we examine how each method

advances the solution by one step (of length hn) from
time tn _ 1 to time tn. To avoid confusion between the time
step length hn and the molal-specific enthalpy for species
n, the latter is denoted by _'n.

Yi = ni i = 1 ,NS )

YNS+ 1 = T

N=NS+I

(A3)

In vector notation, equation (A1) becomes

y_(t = 0) = y_(0) = given

(A4)

where the underscore is used to denote a vector quantity.
A matrix is denoted by a boldface letter. This notation is
used throughout this appendix.

The initial-value problem is to determine values for Yi

(i= 1,N) at the end of a prescribed time interval, given fi
(i = 1,N) and the initial values Yi (0) (i = 1,N).

All methods examined in the present study are step-by-

step methods. They compute approximations Y_n(=Yi, n;
i = 1,N) to the exact solution Y_(tn) at discrete points tl, t2,
t3, ... The size hn of the spacing (= t n- tn- 1) may vary
from one step to the next. Of the methods examined in

EPISODE and LSODE

Both EPISODE and LSODE use the integration

formulas developed by Gear (refs. 20 and 21). These
formulas involve linear multistep methods of the form

K1 K2

Yi,n = _a an,jYi, n-j+hn _a t3n,jYi, n-j (A5)
j=l j=O

where Yi, n is an approximation to the exact solution
Yi (tn), Yi, n[ =fi (Yk,n)] is an approximation to the exact
derivative Yi (tn)I=fi [Yk (tn)]l, and the an,j and 13n,j

(/3n,0>0) are associated with the particular formula
selected by the user. The options include implicit Adams

predictor-corrector formulas and backward differen-
tiation formulas (BDF). As discussed in appendix B,
BDF's were found to be more efficient for problems

examined in this study. The discussion is therefore
restricted to BDF's. For a BDF of order q, K 1= q, K 2= 0,

and equation (A5) reduces to

q

Yi, n = E °tn,jYi, n-j+hn_n,OYi, n
j-1

(A6)

The step length hn ( = tn - tn - 1) can vary from one step
to the next in EPISODE but is held constant for q+ 1
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consecutive successful steps in LSODE. Hence, for

EPISODE, Otn,j and f3n,j can vary from one step to the
next, but in LSODE they are predetermined constants

corresponding to the order used. The predicted values of

Y__nand Y_'n,denoted by _y(O)and _);(o)respectively, satisfy
the equation

q

y(.O)_ h R ^,;(0)_ j_lt,n m'n,o-" i n -- °tn,J yi,n -J

so that equation (A6) can be written as

-u (0) - h _ ^d(°) + hn_n,OYi, nYi, n -"i,n n_'n,u"i,n
(A7)

At each integration step equation (A7) must be solved

for Y_n. This is accomplished as follows: let

°'] (AS)

then the solution to equation (A7) is equivalent to finding

the zero of G. Equation (A8) can be solved in a variety
of ways. Forstiff problems the most efficient is a variant
of Newton's method:

N

(A9)

where m + 1 is the current iteration number and the

matrix P is given by

IK,,, \ Oyk} A")

(m)
= _ik -- hn[3n,OJik,n

where _ik is the Kronecker symbol,

f

}= 0 i#k
6ik 1 i=k

r(rn) (i,k=l,N) are elements of the Jacobianand aik,n
matrix J

,.,

For this method, much computation time is involved in
forming the Jacobian matrix J and in doing the linear

algebra necessary to solve equation (A9). To reduce this
computational work, the matrix P is not updated at every
iteration. For further savings, it is updated only when it
has been determined to be absolutely necessary for

convergence. Hence the iteration matrix is only accurate

enough for the iteration to converge, and the codes may
use the same matrix over several steps of the integration.

In any case, both EPISODE and LSODE update P at
least every twentieth step.

The predicted values y_.O) and .'(o), Yi, n are required before
equation (A9) can be solved for Y_n-These are obtained by
a Taylor series expansion as follows: the history of the
solution is maintained in the Nordsieck array (which is a

Taylor series array) zn of size N× (q + 1). The ith row Z_i,n

contains the q + 1 elements

h2 "" , hqv[q]
Zi,n =Yi, n, hnYi, n, -_Yi, n .... q! " i,n

where y0]_,nis the approximation to (dlyi/dt])t. Thus, if
zn-1 has been obtained,

= _ 1A(q)

where Ajk(q) is given by

I 0 j<k 1
Ajk(q) = (Jk) j>k j,k=0,1,2 ..... q (A10)

where (_) is the binomial coefficient, defined as

j_
Jk) - kl(j= k)!

Thus the predicted values z(n°) are obtained by a simple

Taylor series expansion by using equation (A10). Once
the predicted values have been calculated, equation (A9)
is iterated until convergence. The test for convergence of

the iterates y_,_)is based on successive differences of these

quantities and the local error tolerance EPS as discussed
below. For EPISODE a vector YMAX is constructed as

follows:

IERROR = 1 (absolute error control):

YMAXi= 1 i= 1, 2 ..... N

26



IERROR = 2 (pure relative error control):

YMAXi = LVi,n- l[ i = 1, 2 ..... N

IERROR = 3 (semirelative error control):

YMAX i =max [[Yi,n- l I, [Yi,n -211 for/that satisfy Yi(0) #0

=max [1, [Yi,n - l l] for/that satisfy yi(O) =O

Convergence is said to occur if

Jl,_ Jl, n

.__ k
dmm <--.6' = cEEPS (All)

N

where E' is proportional to EPS, the local error tolerance.
For LSODE and option ITOL = 2 (see appendix B for

other options included in this package), an error vector
EWT is constructed as follows:

EWTi = ¢relLYi, n - 11 + _abs,i i = 1,2 ..... N

where erel(=EPS) and eabs,i are the local relative error
tolerance and the local absolute error tolerance,

respectively, for the variable i.
Convergence is said to occur if

m_ /v(m) _v(m- 1) \ 2

J ijn

i=1 _ EWTi J

dm
N

<-cL (A12)

In equations (All) and (A12) the proportionality

constants cE and CL are chosen to make the convergence
tests consistent with the local truncation error. If

convergence does not occur after the first iteration, both
EPISODE and LSODE anticipate the magnitude of dm

one iteration in advance by assuming that the iterates

converge linearly. Thus dm + l, which does not yet exist, is
estimated by

If the corrector iteration fails to converge in three

iterations, hn is reduced if P is current and the step is
retried; otherwise, P is updated and the step is retried. If
the corrector converges after M (M_3) iterations, an
estimate of the truncation error is made and is accepted if

it passes the following test:

EPISODE:

/ V (M) -- V(O) \ 2

_ I-i,n -i, nl
= 1 \ YMAXi ]

N
_tEEPS

LSODE:

_=_1 /v(M) _V(0) ) 2

-- irn - i,n

EWTi

<t L
N

where tE and tL are test constants that depend on the
order used. If the error test fails, the step is repeated with

a different hn or a lower order until either the test is
passed or the situation is considered hopeless. If the test
is passed, the step is accepted as successful, and the entire

Nordsieck array is updated by

z,, = z_) + e/,_

where

N 0)£n=Zn--_n

and the row vector ln(li.n;i=O,1 ..... q) is determined by
the formulas used and satisfies lo,n= 1 and ll,n = l/_n, O.

For EPISODE, I n depends on the variable step length
and is computed at the start of every step. For LSODE,

li, n are constants that are set at the beginning of the
problem.

In summary, the predictor and corrector steps are

given by

Predictor:

z(0) = z n _ 1A(q)

Corrector:

p__n (m + 1)] _y(m)= P[Ayn( m)]

= -- _G _n ( m)]

y(n m + 1)=y(m) + Ay(m)

m=0,1 ..... M- 1
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y_. +e.

M-1

e.--
m=0

z_ = z_) + e_Ln

and

DT=
NS

k_= l YkCp" k

CHEMEQ

In this technique, developed by Boris and Young (ref.

11), the rate equation (A2) is expressed as a difference
between two positive-definite terms as follows:

dYi =fi = Qi - Di
d7 (A13)

where, for species i, the production rate Qi and the

destruction rate D i can be derived from equation (3)

JJ

Qi = o - 1 _ (p;jR _j + vijRj)
j=l

JJ

Di = P- 1 ]_ (ui'jRj + ui]R -j)
j=l

(A14)

When temperature is an independent variable (method
B), its rate equation (eq. (8)) can be cast in a similar form

by combining equations (8) and (AI3)

NS NS

dYNS + 1 dT k = 1 k = 1

dt
m

dt NS NS

E YkCp, k k_=lYkCp, kk=l =

= QNS + l - DNS + l

= QT-DT

where

NS

QT =
NS

k_=l ykCp'k

The objective of this decomposition is to enable

factorization of Yi from D i

Di = LiY i = Yi
Ti

where L i is obtained simply by dividing D i by y (i.e.,

Li=Di/Yi). With this new notation, equation (AI3) can
be written as

dfli Qi- LiYi = Qi - Yi
_- = r-_. (AI5)

which, for constant Qi and Li, can be solved to give

Yi(tn)=Yi(tn-l +hn)= -_i + [Yi(tn-1)- -_]

x exp(-Lihn) (A16)

With this expression, it can be seen that 1/Li(=ri)

describes how quickly the variable Yi reaches its

equilibrium value.

In advancing the solution from time t n _ 1 to time tn, all

of the equations are separated into two classes, stiff and

nonstiff, according to the criterion

hn I<l stiffri, n - 1 1 nonstiff

where ri, n _ 1 denotes the value of r i at time t n _ 1- The two

types of equations are integrated by separate predictor-

corrector schemes. For equations classified as nonstiff,

the improved Euler method--the Euler method as

predictor and the modified Euler method (or trapezoidal

rule) as corrector--is used. For equations classified as

stiff a simple asymptotic formula is used.

28



Predictor (nonstiff):

y(O) _y n 1+ hnfi, n-/,n-- i, - 1

Predictor (stiff):

,(o) _ Yi,n - l(2Ti, n - 1 - hn) + 2hnl"i,n - 1Qi,n - 1
i,n -- 2ri, n - 1+ hn

(A17)

Corrector (nonstiff):

y!,m+ l': Yi, n- l + _ [fi, n- l + J_t, ml

Corrector (stiff):

yi:m+m':[_[T(i, mn'+_ri.n-l][Q!,mn'+Qi, n-1]

+ Yi, n-1 [7!,_)+7"i,n-1 + hn]}l [T!,nm)+ "/, n-A+ hn

A18)

In equations (AI7) and (A18), m+ 1 is the current
iteration number. The zeroth iterate is the result of the

predictor step. Also, Am)=fi[y(m)]. Convergence is
ascertained by comparing y!nm+ 1)with v (.m) for all N

• "lj ?1

equations using the relative error criterion

.v/<,"+') I

minriy.<m',y.<m+"l]LI ,,n ,,,

<_EPS (A19)

If after ITMAX iterations any of the N variables fails

the test given by equation (A19), the step length is halved
and the step repeated. If all N variables pass the test after
M iterations (M__ITMAX), the step is accepted as
successful and the solution is updated

_ (M) i = 1,NYi, n -Yi, n

CREK1D

In CREK1D, attention is paid to the distinguishing

physical and computational characteristics of the
induction, heat release, and equilibration regimes. This

code consists of two algorithms developed for the two

distinctly different regimes identified in the section
Accuracy Comparisons. These regimes are (a) induction
and early heat release, when the ODE's are dominated by

positive time constants, and (b) late heat release and
equilibration, when the ODE's are more stable. Both

algorithms are based on an exponentially fitted
trapezoidal rule, but they use different iterative methods

for convergence.
In the CREK1D method the temperature is not treated

as an additional independent variable, so the number of
ODE's is equal to NS. The temperature is calculated from

the algebraic energy conservation equation (eq. (7)). In
the following discussion the variables Yi (i= 1,NS)

therefore refer only to the species molenumbers.
The species rate expressionfi (the right side of eq. (A1))

can be expanded in a first-order-truncated Taylor's series
about the current approximate solution, [tn_ 1, Y_n-I

(=Yi, n-1; i= 1, NS), T n_ 1], as follows:

f i= f i, n - 1 + \ dyi / y_n_ l(Yi- Yi, n - 1) (A20)

where dfi/dY i is the total derivative offi with respect to Yi

and is given by the chain rule as

dfi _ _ #fi dYk/dt afi dT/dt
dYi k= 1 -Oyg dYi/dt _ 3t dyi/dt

o;,f,<+=- //i k=l

To avoid confusion with the partial derivative of fi with

respect to Yi (afi/ayi), a special notation is employed

zi- 

With this new notation equation (A20) becomes

fi =fi, n - 1 + Zi, n - l(Yi-Yi, n - 1)

or

dY---i =fi, n - 1 + Zi n - l(Yi -Yi n - 1)
dt ' "

(A21)

which can be integrated to give
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[ exp (hnZi, n -1) - 1 ]Yi, n=Yi, n-l+hnfi, n-1L hnZi, n_l
(A22)

Consider now, an approximate solution to equation (2)
based on a variation of the second-order trapezoidal rule,

the tunable trapezoid,

Yi, n =Yi, n - 1+ hn[ Ui,_fi, n + (1 - Ui,n)fi, n _ 1] (A23)

The substitution of equation (A22) into equation (A23)
gives

1 1
+ (A24)

Ui'n = hnZi, n - 1 1 -- exp(hnZi, n _ 1)

In order to maintain absolute A-stability of equation

(A23) (i.e., Yi, n remains bounded as h n is increased
indefinitely), U i must be restricted to the interval (0.5,
1.0). For values of Zi>O, equation (A24) gives Ui<0.5.

CREK1D resolves this problem by setting Zi = 0 whenever
it is greater than zero. This gives Ui=0.5, so that
equation (A23) defaults to the second-order-accurate

trapezoidal rule. However, for Zi<_O, equations (A23)
and (A24) together are equivalent to the locally exact or
exponential solution, which has an equivalent polynomial

accuracy of order six to eight. Thus equations (A23) and

(A24), with the constraint (0.5< Ui< 1), constitute an
exponentially fitted trapezoidal rule, a method which is
A-stable and has a polynomial-order accuracy of at least
two and as great as six to eight.

At each integration step, equation (A23) must be

solved for Yi, n. This is accomplished by Newton-Raphson
iteration in regime b and Jacobi-Newton iteration in

regime a.

A Newton-Raphson functional F!, m) (i = 1,NS) for the
species mole numbers is defined from equation (A23) by

F!m)=Y},rff)-Yi, n-1 (1-Oin "x• hnUi, n _i,n" ) fi'n-l-f(i'm) (A25)

For temperature the functional F(m ) is defined from the

enthalpy conservation equation (7) as

NS
F (m)_

T,n - k___1Y(,_)_k[_ m)] - Ho(To) (A26)

where rn is the iteration number, T(nm) is the mth-
approximation to the exact value T(tn), fig [Tn(m)] is the

molal-specific enthalpy of species k at temperature T (m),

and H 0 (To) is the initial mixture mass-specific enthalpy
at the initial temperature To.

Newton-Raphson corrector equations with log variable
corrections (for self-scaling of the widely varying mole

numbers) are given by

OF/(,m) Alogy(_)
k=l 0 logy(,_ )

OF !m) T(m)+ ,,n .Alog = -F/(.nm)
0log T_nm)

NS a Lz,(m)

E 01 Tn AI .... (m)

Ology_m)--'v_'rk, nk=l

O ,_( m) .

rT n ^_ r(nm) = _F_.m,n)+ " m' A lug;
0log T_n J

(A27)

. (0)
To start the iteration process, the predicted values Yi n
and T (°) are obtained quite simply by setting them equal

to the values at the previous time step

y(O)
i,n = Yi, n - 1

T(On) = Tn - 1

i = 1,NS

The Jacobi-Newton iteration technique can be derived
from the Newton-Raphson iteration procedure by
neglecting the off-diagonal elements of the Jacobian

matrix Ofl./Oy k. With this simplification, equations (A27)
reduce to

OF( m)
-- t n Airily (m) = -F (m) (A28)
01ogy!,m) ..... ,,n ,,n

m)
OF_m+ .Alog T (m)= - F(Fm) (A29)

0log T_ mJ

The iteration procedure is further simplified as follows:

the expression for OF!,m)/o log y!,m), derived from equa-
tion (A25), is given by

OF (m) v (m) 0 (m)
,,n = J tn _ v( m) Of} n'

Ology!m) hnUi n Jt, n av(m )
• " ,.'l, rt

In deriving an expression for Of_,_)/Oy!, m), the partial
derivatives with respect to the inverse mean molar mass

nm are assumed to be negligible in comparison with the
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other terms. This results in the following approximation

for of!m)/Oy_ m) (see eq. (11) for the exact expression for
Of(.m) yb'v(m)):

J l,_ "/1,_ i"

JJ

- 1 _ (Pi'j -- vi'j)(vi'iRj - v(jR _j)
j=l

For Jacobi-Newton iteration, this expression is further

approximated by

JJ

of_m'"' =.(m, -[PY! m']-1E, (v'_jgj+v'_jg_j)
Oyi, n j= 1

which when combined with equation (A14) gives

Oy!,m) y!,m)

where D!,nm) is the destruction rate of species i. With these
simplifications equation (A28) can be solved explicitly for
the iterative corrections

F(.m)
Alogy_, m) /.77

y!,m)/hnUiln + D_,m)

From equation (A26) the following expression can be
derived:

OF_m) = T (m) NS
OlogT (m, k=lEY_m,n)Cp,k[T(m)]

where Cp,k[T (m) ] is the constant pressure molal-specific
heat of species k at temperature T(nm) . Substituting the

preceding equation into equation (A29) gives

Alog T ( m) =

T (m) Ns [ ]E T(;n)
k=l

To start the iteration process, the predicted values yt(0n)
are obtained from equation (A22)

y(O) hnfi, n - 1 L hnZi, n - 1 ]i,n = Yi, n-1 + F exp(hnZi, n - 1)- 1

The predicted temperature Tn(°) is obtained by a single
Newton-Raphson iteration

v(,°)= T._ +
Ho(ro) -

NS

k=l

NS

E Y_O,)nCp,kTn-1
k=l

For both Newton-Raphson (NR) and Jacobi-Newton

(JN) iteration schemes the current values v(re+l) and
Jl, H

T(m + 1) are updated by the approximate equations

y!,m+ 1, =yi(,nm,[1 + Alogy},m)]

(m+ 1)_ A1og Tn(m) ]

(A30)

The test for convergence of the iterates v (m+ 1) is based
_l, ?/

on the value _ log y/(,m) and is given by

_NS

l.=_l [A 1ogy!,m)] 2

NS
_<EPS (A31)

This test is used only with variables whose magnitudes

are greater than 10-20; that is, the summation does not
include species with mole numbers less than or equal to

10-20. If convergence is not obtained after ITMAX
iterations, the step length is reduced and the step retried.
If convergence is achieved in M iterations (M< ITMAX),

the step is accepted as successful and the solution is
updated

_ (M) i= 1,NSYi, n --Yi, n

7".= T_

CREK1D automatically selects the iteration scheme

(JN or NR) to be used for solving equation (A23). During
induction and heat release, when small step lengths are

required for solution stability, the JN iteration is used to
minimize computational work. During late heat release

and equilibration, when the ODE's are more stable and
larger step lengths can be used, NR iteration is preferred
since it has a much larger radius of convergence than JN

iteration. The regime identification test exploits the fact
that during equilibration many reactions achieve a
condition in which the forward and reverse rates are large

but have vanishingly small differences. The actual test

employed at the beginning of each time step is
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Lfi[-< lO-3(Qi+Di) (A32)

where Qi and D i are the production and destruction

terms, respectively, for species i (eq. (A14)). If any of the
species satisfies equation (A32), regime b is obtained and
the NR iteration is used for the step. If none of the

species satisfies equation (A32), regime a is obtained and
the JN iteration is used for the step.

For this method much computation time can be

involved in calculating Z i because it requires the

evaluation of the Jacobian matrix. To avoid evaluating
this matrix, Zi, n_ 1 is estimated as follows: if equation

(A21) is applied to the entire time step hn

fi, n = fi, n- 1 + Zi, n- l(Yi, n -Yi, n- 1)

which, when substituted into equation (A22), gives

f i,n= f i,n - lexp(hnZi, n - 1)

or

_n (fi, n_Zi, n 1= log \fi, n - 1,]

However, fi, n is not known at the start of the step, so

approximations have to be developed for Zi, n_ 1. For the
NR iteration, Zi, n_ 1 is approximated by

Zi, n - 1 = hn log
for O< fi'n-I <1

fi, n -2

=0 otherwise

conditions may arise, for example, in multidimensional
modeling because of the averaging of mole numbers over

adjacent grid nodes. CREK1D therefore "filters" the
initial conditions to provide physically meaningful initial

mole numbers and net species production rates. For
purposes of this filtering CREK1D uses the

decomposition performed in CHEMEQ (eqs. (A13) and
(A15)). On the first call to CREK1D it uses this

formulation over one time step of length hi, which is
determined by

1

hl- maxLi

The predictor-corrector algorithm uses equation (A15)
as the predictor

y!,O_= Yi(O) + hlfi(O) [ 1 - exP[hFL/_-hlLi(O)l 1

An implicit Euler corrector is then iterated to

convergence

y}y + =y;(0) +1)

In these equations Yi(O) are the initial values and the
subscript 1 is used to indicate that this is the first step.
Using equations (A13), (A15), and (A30), together

with the approximations Q_,_+ 1)= Q},_) and L_,_ + 1)=
L_,_ ), the preceding corrector equation can be rewritten

to provide the following expression for the log variable
corrections A log ,,(m).

-ri, 1 •

Alogy!,_ n) = Yi(O) - y(i r_) + hlf}r_ )
,,(m) + h,D(m)

J'i, 1 1 i, 1

(A33)

For the JN iteration, Zi, n_ 1 is approximated by

1 fi, n-l-fi, n-2 forfi, n_lfi, n_2> 0
Zi, n - 1 - hn f i,n- 1

and fi, n - 1;_ 0

= 0 otherwise

CREK1D also includes an algorithm for filtering the

initial conditions that may be ill posed. These ill-posed
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Equation (A33) is iterated until convergence, which is

ascertained by the criterion given by equation (A31). If
convergence is not obtained after 10 iterations, the step

length is halved and the step retried. If convergence is
obtained after M iterations (M_< 10), the step is accepted
as successful, the solution for the mole numbers is

updated

Yi, l=Y!,l M) i= 1,NS

and the temperature T1 is obtained by a single Newton-
Raphson iteration



NS

z40(r0)- _ yk, lh-k(r0)
k=l

r 1= To+
NS
E Yk, lCp,k(To)

k=l

GCKP84

GCKP84 is a general-purpose chemical kinetics
program designed to solve a wide variety of problems
(ref. 18). It uses the integration technique developed by

Zeleznik and McBride (ref. 16) specifically to integrate
chemical kinetic rate equations. Details of this
integration technique are not yet available.

DASCRU

DASCRU is an explicit fourth-order Runge-Kutta

process that differs from the standard Runge-Kutta
method as follows: the standard Runge-Kutta method
requires four derivative evaluations per step. The main

disadvantage with its use is the difficulty of estimating
the local truncation error at each step, since its formal
expression is excessively complicated. The Runge-Kutta-

Merson method requires an additional derivative
computation that serves to determine the estimated local

error. This technique uses the following equations to

advance the solution from time tn- 1 to time tn (ref. 19):

y(1) =y. , + hn
,,n l,n-J _-fi, n-1

,,n =Yi, n -1 + ,n -1 +_i,1)n

_[fi 3f(2)]Yf3,)n=Yi, n-1 + ,n-1 + -t, nj

hn [fi ,_¢(2) + -" l,r/j*}_)n :Yi, n 1 + --f ,n - 1 - "J i,n 4f(3)]

,5) + h6_ If/ + 4f(3)+/.(4)]i,n = Yi, n - 1 ,n - 1 _t,n Jt, nj

In these equations

A good estimate of the local error in computed y!,5), the
accepted value for Yi, n, is (v (4) ' (5))/5, if the time step isvl,r/-- -Y i,/'/*

sufficiently small (ref. 19). However, DASCRU uses the

following test to ascertain convergence:

y(4) --v(5) <0.5EPS
i,n -" i,n

I v(4) -v('5) IJt.n Jt.n <0.5EPS
• (5)

.vi, rt

,(5) < 10 3for Yi, n

(A34)

for v(5) ___10-3

where EPS is the local error tolerance. If any of the

variables fails to satisfy the convergence criterion (eq.
(A34)), the step length is halved and the step is retried. If

all of the variables satisfy the convergence criterion (eq.
(A34)), the step is accepted as successful and the solution
is updated

, (5)
Y i, n = Y i, n
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Appendix B

User-Supplied Parameters

The codes (EPISODE, LSODE, CHEMEQ, CREK1D,
GCKP84, and DASCRU) examined in this study require
the specification of several parameters in addition to the

local error tolerance EPS and the elapsed time at which
the integration is to be terminated. For each code, values
for the user-supplied parameters that minimized the CPU

time required by the code were obtained by a trial-and-
error procedure. The parameters required by each code
are discussed below.

EPISODE

EPISODE requires the user to specify the method flag
MF, the error control to be performed IERROR, and the
guess for the initial step length H0. For both test prob-

lems all options (10, 11, 12, 13, 20, 21, 22, and 23) for
MF were tried, and the stiff option with a user-supplied
analytic evaluation of the complete Jacobian matrix

(MF = 21) was found to be the most efficient. The type of
error control to be performed is specified by the

parameter IERROR, which has three possible values: 1,
2, and 3. For IERROR = 1, the error control is absolute;

and for IERROR = 2, it is relative. In the test problems
examined in this study, the variables differ widely (see

tables IV and V), so relative error control is appropriate.
However, since some of the mole numbers had zero

initial values, pure relative error control could not be
used. The option IERROR = 3 was used instead. This is a
semirelative error control. It is relative for variables that

are initially nonzero. For a variable that is initially zero,
the error control is absolute until the variable reaches

unity in magnitude, when the control becomes relative.

Since none of the mole numbers reaches a value of unity,
the error control is always absolute for species with

initially zero mole numbers. The optimum value for H0
was found to be a function of the problem, the
temperature method used, and the value for EPS. For

test problem 2, values for H0 close to the optimum value
resulted in vastly increased CPU times. This behavior is
illustrated in table VIII. Note that a decrease in H0 from

10-7 to 10-8 s has resulted in an order-of-magnitude

increase in the CPU time. Although not shown here, the
solution was also found to be adversely affected by a
poor choice for H0. Also, some values for H0 resulted in

problems with solution instability.

LSODE

The user-specified parameters for LSODE include the

method flag MF, the error control to be performed
ITOL, and values for the local relative RTOL and
absolute ATOL error tolerances. Both RTOL and ATOL
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can be specified either as (1) a scalar, so that the same
error tolerance is used for all variables, or (2) an array, so
that different values for the error tolerance can be used

for different variables. The value of ITOL indicates

whether RTOL and ATOL are scalars or arrays. ITOL

has four possible values (1, 2, 3, and 4) which correspond
to the types of RTOL and ATOL as follows:

ITOL = 1: scalar RTOL and scalar ATOL

ITOL = 2: scalar RTOL and array ATOL
ITOL = 3: array RTOL and scalar ATOL

ITOL =4: array RTOL and array ATOL

The option ITOL=2 (scalar RTOL and array ATOL)

was used for the following reasons: since the same
number of significant figures (given by RTOL) is

acceptable for all components, RTOL was specified as a
scalar. However, since the temperature has much larger
values than the species mole numbers, ATOL can be

much larger for the temperature than for the mole

numbers. Hence ATOL was specified as an array.
For both test problems, the options (10, 11, 12, 13, 20,

21, 22, 23) for MF were tried and the method MF=21

(backward differentiation method and user-supplied
analytic evaluation of the complete Jacobian matrix) was

found to be the fastest. For species mole numbers, values
for the absolute error tolerances that resulted in

minimum CPU times were found to be a function of the

problem, the temperature method used, and the value of

the relative error tolerance EPS. For values of EPS given
in tables XI and XII for test problems 1 and 2,
respectively, a value of zero for the absolute error

tolerance for the temperature (required by LSODE-B)

resulted in minimum CPU times for both test problems.

CHEMEQ

CHEMEQ requires the user to specify the maximum
number of corrector iterations ITMAX to be attempted

before nonconvergence is declared and a smaller step
length tried. The optimum value for ITMAX was found
to be 5 for both test problems. Several attempts at

increasing the efficiency of CHEMEQ were made. These
included (1) replacement of the Newton-Raphson

iteration procedure for the temperature (method A) with
a single Newton-Raphson iteration and (2) limiting the

temperature change per time step. If the temperature
change during any time step exceeded the maximum

permitted, the step was shortened accordingly and
retried.

Modification (1) resulted in less efficiency and more

errors and was therefore abandoned. Test (2) was applied



(a)aftereachpredictorstep,(b)aftereachcorrectorstep,
and(c)aftereachpredictorstepandaftereachcorrector
step.Fortestproblem1 andtemperaturemethodA,
optioncwasfoundto bethemostefficient.

Variousvaluesfor themaximumtemperaturechange
permittedpertimestepweretried,andtheoptimum
valuewasin therange7to 8kelvinsfor testproblem1.
Althoughoptioncwasfoundto bethebestamongthe
threeoptions(a-c),it wasonlymarginallyfasterthanthe
basicalgorithm(withnoconstraintonthetemperature
changepertimestep).Also, for testproblem2 with
temperaturemethodA, andfor bothtestproblemswith
temperaturemethodB,noneof thethreeoptionswas
moreefficientthanthebasicalgorithm.In addition,
whenthereactionrateswerenotcontinuouslycalculated
but wereupdatedonlyafteran allowedtemperature
changeAT, the basic method was found to be the most
efficient. Hence modification 2 was also rejected.

CREKID

The user-supplied parameters to CREK1D include the
maximum number of corrector iterations ITMAX

allowed before nonconvergence is declared; and the
maximum temperature change DELT allowed before the

thermodynamic properties h i and cp, i (i= 1,NS) and the
rate constants kj [=AjTNj exp(-Tj/T)I and T_j, N_j,

and k_j [=A _jTN-j exp(-T_j/T)] are updated. Note
that T_j, N_j, and k_j are calculated from the forward
rate constants and the equilibrium constant. See Pratt
and Wormeck (ref. 27) for details. The optimal value for

ITMAX was in the range 5 to 7, depending on the test
problem and the value of the relative error tolerance. For

all runs presented in this report, a value of ITMAX = 10
was used. The optimal value for DELT was in the range 1
to 2 kelvins depending on the problem and on the value
of the relative error tolerance.

GCKP84

Since details for this technique are not yet available,
default values for all parameters were used.

DASCRU

This code requires the user to specify the guess for the

initial step length H0. The optimum value for H0 was
found to a function of the problem, the temperature
method used, and the error tolerance required of the
solution.
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Appendix C

Approximation for Maximum Temperature Change Between Rate Constant Updates

As discussed in the section Computational Tactics,
significant increases in efficiency are realized by updating

the forward rate constants kj [= AjTNj exp (- Tj/T)] and
the backward rate constants T_j, N_j, and k_j
[= A _jT N J exp ( - T_j/7)] only when the temperature
change exceeds an amount ATthat is problem dependent.
In specifying a value for AT, care must be taken to avoid

poor approximations in the resulting reaction rates
because this leads to excessive computational work, as
shown, for example, in table IX. To avoid the work

associated with a trial-and-error search for an optimum

value for AT, we now develop a simple approximation
for it.

Consider rate constant kj for reaction j. The exact
expression for kj is given by

kj=AjTNjex p -- Tj (C1)
T

where Aj is the preexponential constant, Tj is the
activation temperature (= Ej/R, where Ej is the
activation energy and R the universal gas constant), and
T is the current value of the temperature.

The idea behind using AT is that the work associated

with computing kj and the reverse rate constants (T_j,

N_j, and k_j) from the forward rate constants and the
equilibrium constant is eliminated for changes in T not
greater than AT. Hence, if the temperature changes from

its current value of Tby an amount not greater than AT,

the rate constants kj and k_j are not reevaluated. The

poorest approximation (kj,approx) for the new rate
constant is therefore given by equation (C1) as follows:

kj,approx=Aj74VJexp(_TT" ) (C2)

The exact expression for kj (kj,exact) is given by

exp
kj'exact=Aj(T±AT)Nj ( T±AT) (C3)

where the plus sign denotes increasing temperature and

the minus sign denotes decreasing temperature.
We now estimate the maximum allowable AT by

limiting the relative error in the resulting reaction rate to
be no greater than EPS, the error tolerance required of
the solution,

1- _ ]_< EPS (C4)kj,exact

where the bars I ] denote absolute value.

The division of equation (C2) by equation (C3) and
rearrangement give

[ (_)] 1- 1
exp 1±er

_rox -- (c5)
kj'exact (1 ±eT)NJ

where e_T=AT/T , the positive sign denotes increasing

temperature, and the negative sign denotes decreasing
temperature.

There are four possible cases (other than the trivial one

Tj=Nj=0) as follows:

(1) For increasing T

(a) (_ +Nj) >0

(2) For decreasing T

(a) (_ +Nj) >0

Consider case a. For increasing

(Tj/T+ Nj), inequality (C4) becomes

1

1 +e T

T and positive

(1 + e T)NJ

> 1 - EPS (C6)

For small EPS and eT, exp(-EPS)_I-EPS,

exp(ET)_I +eT, and 1/(1 +eT)--I--eT, so that equation
(C6) becomes
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or

or

EPS
_.T _ --

T

or

EPS T
AT<

TJ+N;
T

exp (-eTNj)> exp (-EPS)

> - EPS

for e T,EPS << 1;

(r/r+N;).o

Equation (C7) gives the maximum value of AT that can

be used without resulting in a relative error greater than

EPS in the forward reaction rate Rj for reaction j. For
each forward and reverse reaction a value for the

maximum allowable AT can be calculated by using
equation (C7). Using the minimum of these values will
ensure that no forward or reverse reaction rate will have a

relative error greater than EPS. The minimum value for

ATover all forward and reverse reaction rates is given by

AT=min I EPS T

EPS T

(C8)

Similar analyses for the other three cases lead to similar

expressions for AT. These four expressions can be
replaced by a single expression given by

_ EPS T

ATmax I TJ+NJIT

(C7)

Equation (C8) provides a simple expression for the

automatic evaluation of ATthroughout the history of the

problem. Every time the rate constants kj, T_j, N_j, and
k_j are evaluated, which occurs only when the
temperature change since the last update of the rate
constants exceeds AT, a new value for AT can be

calculated by using equation (C8). Using this equation
therefore avoids the work associated with a trial-and-

error search for the optimum value of eXT.
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